Preview

FOOD METAENGINEERING

Расширенный поиск

Молочная сыворотка в 3DP: обзор предметного поля

https://doi.org/10.37442/fme.2025.2.88

Аннотация

Введение. Проблема утилизации молочной сыворотки остается актуальной, несмотря на развитие современных технологий переработки, таких как мембранные методы, биотехнологические подходы и консервирование. Глобальное производство сыворотки превышает 160 млн тонн в год и продолжает расти, что требует поиска новых решений в рамках концепции циркуляционной экономики. В последние годы технологии Индустрии 4.0, включая 3D-печать (3DP), привлекают внимание как перспективный инструмент для переработки побочных продуктов молочной промышленности. Однако адаптация сывороточных белковых продуктов для 3DP требует дополнительного изучения их свойств и методов модификации.

Целью настоящего обзора предметного поля стало изучение и анализ потенциала и текущего применения белковых продуктов переработки молочной сыворотки, как компонентов в составе чернил для 3DP.

Материалы и методы. Обзор выполнен в соответствии с руководством PRISMA-ScR. Поиск литературы проведен в ScienceDirect, Scopus и PubMed (2010–2025 гг.) с использованием целевых ключевых запросов. Для анализа структуры предметного поля использован VOSViewer.

Результаты. Анализ 56 отобранных источников показал, что сывороточные белковые компоненты (в 76% случаях WPI) активно исследуются в качестве ингредиентов для разработки 3DP чернил. Их потенциальное применение охватывает производство пищевых продуктов, включая функциональное и персонализированное питание (в том числе для людей с дисфагией), а также биомедицину, тканевую инженерию и химическую промышленность. Основное внимание исследователей в данном поле уделено изучению реологических, текстурных и микроструктурных характеристик разрабатываемых 3DP материалов, а также методов их модификации: изменения состава рецептур, технологической обработки до 3DP (регулирование pH, тепловая и механическая обработка) и после нее (сушка, карбонизация, СВЧ).

Выводы. Результаты обзора подтверждает перспективность применения сывороточных белков в составе материалов для 3DP. В качестве рекомендаций по развитию исследований в данном поле авторы предлагают уделить внимание систематизации накопленных знаний по ключевым компонентам в комбинации с сывороточными белками, прогностическому моделированию оптимальных комбинаций компонентов в рецептуре 3DP материалов, базируясь на их способности к межмолекулярным взаимодействиям и значимым свойствам, а также внедрению других сывороточных белковых ингредиентов, например гидролизатов, в активное использование для 3DP.

Об авторах

Екатерина Ивановна Большакова
ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МОЛОЧНОЙ ПРОМЫШЛЕННОСТИ
Россия


Наташа Поклар Ульрих
Люблянский университет
Словения


Список литературы

1. Aït-Kaddour, A., Hassoun, A., Tarchi, I., Loudiyi, M., Boukria, O., Cahyana, Y., Ozogul, F., & Khwaldia, K. (2024). Transforming plant-based waste and by-products into valuable products using various “Food Industry 4.0” enabling technologies: A literature review. Science of The Total Environment, 955, 176872. https://doi.org/10.1016/j.scitotenv.2024.176872

2. Araújo, J. F., Fernandes, J.-M., Madalena, D., Gonçalves, R. F. S., Vieira, J. M., Martins, J. T., Vicente, A. A., & Pinheiro, A. C. (2025). Development of 3D-printed foods incorporating riboflavin-loaded whey protein isolate nanostructures: Characterization and in vitro digestion. Food & Function, 16(5), 2124–2135. https://doi.org/10.1039/D4FO05102E

3. Bareen, M. A., Joshi, S., Sahu, J. K., Prakash, S., & Bhandari, B. (2021). Assessment of 3D printability of heat acid coagulated milk semi-solids ‘soft cheese’ by correlating rheological, microstructural, and textural properties. Journal of Food Engineering, 300, 110506. https://doi.org/10.1016/j.jfoodeng.2021.110506

4. Bareen, M. A., Sahu, J. K., Prakash, S., Bhandari, B., & Naik, S. (2023a). A novel approach to produce ready-to-eat sweetmeats with variable textures using 3D printing. Journal of Food Engineering, 344, 111410. https://doi.org/10.1016/j.jfoodeng.2023.111410

5. Bareen, M. A., Joshi, S., Sahu, J. K., Prakash, S., & Bhandari, B. (2023b). Correlating process parameters and print accuracy of 3D-printable heat acid coagulated milk semisolids and polyol matrix: Implications for testing methods. Food Research International, 167, 112661. https://doi.org/10.1016/j.foodres.2023.112661

6. Cai, Q., Zhong, Y., Huang, Q., Huang, G., & Lu, X. (2023). Co-incorporation of probiotics into 3D printed custard cream with hydrophilic and hydrophobic bioactives. Food Hydrocolloids, 142, 108809. https://doi.org/10.1016/j.foodhyd.2023.108809

7. Cai, Q., Zhong, Y., Xu, M., Huang, Q., & Lu, X. (2022). 3D printed high oil custard cream: Effects of whey protein isolate, hydroxypropylated starch, and carrageenan on physicochemical properties and printing performance. LWT, 156, 113039. https://doi.org/10.1016/j.lwt.2021.113039

8. Carvajal-Mena, N., Tabilo-Munizaga, G., Pérez-Won, M., & Lemus-Mondaca, R. (2022). Valorization of salmon industry by-products: Evaluation of salmon skin gelatin as a biomaterial suitable for 3D food printing. LWT, 155, 112931. https://doi.org/10.1016/j.lwt.2021.112931

9. Chaudhary, V., Kajla, P., Verma, D., Singh, T. P., Kothakota, A., Prasath, V. A., Jeevarathinam, G., Kumar, M., Ramniwas, S., Rustagi, S., & Pandiselvam, R. (2023). Valorization of dairy wastes into wonder products by the novel use of microbial cell factories. Trends in Food Science & Technology, 142, 104221. https://doi.org/10.1016/j.tifs.2023.104221

10. Chen, Y., McClements, D. J., Peng, X., Chen, L., Xu, Z., Meng, M., Zhou, X., Zhao, J., & Jin, Z. (2024). Starch as edible ink in 3D printing for food applications: a review. Critical Reviews in Food Science and Nutrition, 64(2), 456–471. https://doi.org/https://doi.org/10.1080/10408398.2022.2106546

11. Cheng, Y., Wang, B., Lv, W., Zhong, Y., & Li, G. (2024). Effect of xanthan gum on physicochemical properties and 3D printability of emulsion-filled starch gels. Food Hydrocolloids, 149, 109613. https://doi.org/10.1016/j.foodhyd.2023.109613

12. Chourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2022). Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. Bioresource Technology Reports, 19, 101144. https://doi.org/10.1016/j.biteb.2022.101144

13. Chow, C. Y., Thybo, C. D., Sager, V. F., Riantiningtyas, R. R., Bredie, W. L. P., & Ahrné, L. (2021). Printability, stability, and sensory properties of protein-enriched 3D-printed lemon mousse for personalised in-between meals. Food Hydrocolloids, 120, 106943. https://doi.org/10.1016/j.foodhyd.2021.106943

14. Daffner, K., Ong, L., Hanssen, E., Gras, S., & Mills, T. (2021a). Characterising the influence of milk fat towards an application for extrusion-based 3D-printing of casein−whey protein suspensions via the pH−temperature-route. Food Hydrocolloids, 118, 106642. https://doi.org/10.1016/j.foodhyd.2021.106642

15. Daffner, K., Vadodaria, S., Ong, L., Nöbel, S., Gras, S., Norton, I., & Mills, T. (2021b). Design and characterization of casein–whey protein suspensions via the pH–temperature-route for application in extrusion-based 3D-Printing. Food Hydrocolloids, 112, 105850. https://doi.org/10.1016/j.foodhyd.2020.105850

16. Dong, S., Qian, Z., Liu, X., Liu, F., Zhan, Q., Hu, Q., & Zhao, L. (2024). Exploring gelation properties and structural features on 3D printability of compound proteins emulsion gels: Emphasizing pH-regulated non-covalent interactions with xanthan gum. Food Chemistry, 461, 141005. https://doi.org/10.1016/j.foodchem.2024.141005

17. Du, Y., Zhang, M., & Chen, H. (2021). Effect of whey protein on the 3D printing performance of konjac hybrid gel. LWT, 140, 110716. https://doi.org/10.1016/j.lwt.2020.110716

18. Feng, C., Zhang, M., & Bhandari, B. (2018). Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: A review. Critical Reviews in Food Science and Nutrition, 59(19), 3074–3081. https://doi.org/10.1080/10408398.2018.1481823

19. Feng, M., Zhang, M., Mujumdar, A. S., & Guo, Z. (2024). Influence of components interaction in recombined food gels on 3D printing: A comprehensive review. Food Hydrocolloids, 151, 109782. https://doi.org/10.1016/j.foodhyd.2024.109782

20. Feng, L., Li, M., Dai, Z., Xu, Y., Zhang, Z., Zhang, M., Yu, D., & Li, D. (2025). 3D printed emulsion gels stabilized by whey protein isolate/polysaccharide as sustained-release delivery systems of β-carotene. Carbohydrate Polymers, 355, 123429. https://doi.org/10.1016/j.carbpol.2025.123429

21. Fan, F., Li, S., Huang, W., & Ding, J. (2022). Structural characterization and fluidness analysis of lactose/whey protein isolate composite hydrocolloids as printing materials for 3D printing. Food Research International, 152, 110908. https://doi.org/10.1016/j.foodres.2021.110908

22. Ghazal, A. F., Zhang, M., & Guo, Z. (2023). Microwave-induced rapid 4D change in color of 3D printed apple/potato starch gel with red cabbage juice-loaded WPI/GA mixture. Food Research International, 172, 113138. https://doi.org/10.1016/j.foodres.2023.113138

23. Ghobadi, F., Kalantarzadeh , R., Menarbazari, A. A., Salehi, G., Fatahi, Y., Simorgh, S., Orive, G., Dolatshahi-Pirouz, A., & Gholipourmalekabadi, M. (2025). Innovating chitosan-based bioinks for dermal wound healing: Current progress and future prospects. International Journal of Biological Macromolecules. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2025.140013

24. Ghorbani, F., Kim, M., Ghalandari, B., Zhang, M., Varma, S. N., Schöbel, L., Liu, C., & Boccaccini, A. R. (2024). Architecture of β-lactoglobulin coating modulates bioinspired alginate dialdehyde-gelatine/polydopamine scaffolds for subchondral bone regeneration. Acta Biomaterialia, 181, 188–201. https://doi.org/10.1016/j.actbio.2024.04.028

25. Gogoi, D., Kumar, M., & Singh, J. (2024). A comprehensive review on hydrogel-based bio-ink development for tissue engineering scaffolds using 3D printing. Annals of 3D Printed Medicine, 15, 100159. https://doi.org/10.1016/j.stlm.2024.100159

26. Gong, P., Yue, S., Wang, J., Xu, K., Yang, W., Li, N., Wang, J., Zhao, Y., Chen, F., & Guo, Y. (2025). Effect of ultrasound synergistic pH shift modification treatment on Hericium erinaceus protein structure and its application in 3D printing. International Journal of Biological Macromolecules, 295, 139562. https://doi.org/10.1016/j.ijbiomac.2025.139562

27. Hassoun, A., Tarchi, I., & Aït-Kaddour, A. (2024). Leveraging the potential of fourth industrial revolution technologies to reduce and valorize waste and by-products in the dairy sector. Current Opinion in Green and Sustainable Chemistry, 47, 100927. https://doi.org/10.1016/j.cogsc.2024.100927

28. Hewitt, E., Mros, S., Mcconnell, M., Cabral, J., & Ali, A. (2019). Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration. Biomedical Materials, 14(5). https://doi.org/10.1088/1748-605X/ab3344

29. Hu, Z., Cao, W., Shen, L., Sun, Z., Yu, K., Zhu, Q., Ren, T., Zhang, L., Zheng, H., Gao, C., He, Y., Guo, C., Zhu, Y., & Ren, D. (2022). Scalable Milk-Derived Whey Protein Hydrogel as an Implantable Biomaterial. ACS Applied Materials & Interfaces, 14(25), 28501–28513. https://doi.org/10.1021/acsami.2c02361

30. Hussain, S., Malakar, S., & Arora, V. K. (2021). Extrusion-Based 3D food printing: Technological approaches, material characteristics, printing stability, and post-processing. Food Engineering Reviews, 14(1), 100–119. https://doi.org/10.1007/s12393-021-09293-w

31. Jeon, E. Y., Kim, Y., Yun, H.-J., Kim, B.-K., & Choi, Y.-S. (2024). 3D printing of materials and printing parameters with animal resources: A review. Food Science of Animal Resources, 44(2), 225–238. https://doi.org/10.5851/kosfa.2023.e73

32. Ji, Y., Sun, Y., Chang, Y., Ye, H., & Shen, X. (2025). Development and characterization of a high internal phase Pickering emulsion stabilized by whey protein–based nanoparticles with excellent antioxidant activity for 3-dimensional printing. Journal of Dairy Science, 108(6), 5611–5627. https://doi.org/10.3168/jds.2024-26043

33. Joshi, S., Sahu, J. K., Prakash, S., & Naik, S. N. (2024). Modulating the 3D printability of vitamin D3-nanoemulsion-based dairy gels: Influence of emulsifier on gel structure, printing behaviour and vitamin D3 retention. Journal of Food Engineering, 373, 112032. https://doi.org/10.1016/j.jfoodeng.2024.112032

34. Kamlow, M.-A., Holt, T., Spyropoulos, F., & Mills, T. (2022). Release and co-release of model hydrophobic and hydrophilic actives from 3D printed kappa-carrageenan emulsion gels. Food Hydrocolloids, 132, 107852. https://doi.org/10.1016/j.foodhyd.2022.107852

35. Kamlow, M.-A., Spyropoulos, F., & Mills, T. (2021). 3D printing of kappa-carrageenan emulsion gels. Food Hydrocolloids for Health, 1, 100044. https://doi.org/10.1016/j.fhfh.2021.100044

36. Kayadurmus, H. M., Rezaei, A., Ilhan, E., Cesur, S., Sahin, A., Gunduz, O., Kalaskar, D. M., & Ekren, N. (2024). Whey protein-loaded 3D-printed poly (lactic) acid scaffolds for wound dressing applications. Biomedical Materials, 19(4), 045045. https://doi.org/10.1088/1748-605X/ad565d

37. Kan, X., Dai, Z., Chen, D., Zeng, X., & Fan, X. (2023). High internal phase emulsion stabilized by whey protein isolate-gum Arabic Maillard conjugate: Characterization and application in 3D printing. Food Hydrocolloids, 145, 109137. https://doi.org/10.1016/j.foodhyd.2023.109137

38. Kan, X., Zhang, S., Kwok, E., Chu, Y., Chen, L., & Zeng, X. (2024). Granular hydrogels with tunable properties prepared from gum Arabic and protein microgels. International Journal of Biological Macromolecules, 273, 132878. https://doi.org/10.1016/j.ijbiomac.2024.132878

39. Kong, D., Zhang, M., Mujumdar, A. S., & Luo, Z. (2025). Novel heterogeneous 3D printing process of protein-polysaccharide gel containing orange juice sacs: Optimization of material properties and printing parameters. International Journal of Biological Macromolecules, 305, 141277. https://doi.org/10.1016/j.ijbiomac.2025.141277

40. Li, G., Wang, B., Lv, W., Mu, R., & Zhong, Y. (2024). Effect of induction mode on 3D printing characteristics of whey protein isolate emulsion gel. Food Hydrocolloids, 146, 109255. https://doi.org/10.1016/j.foodhyd.2023.109255

41. Li, M., Feng, L., Xu, Y., Nie, M., Li, D., Zhou, C., Dai, Z., Zhang, Z., & Zhang, M. (2023). Rheological property, β-carotene stability and 3D printing characteristic of whey protein isolate emulsion gels by adding different polysaccharides. Food Chemistry, 414, 135702. https://doi.org/10.1016/j.foodchem.2023.135702

42. Li, N., Qiao, D., Zhao, S., Lin, Q., Zhang, B., & Xie, F. (2021). 3D printing to innovate biopolymer materials for demanding applications: A review. Materials Today Chemistry, 20, 100459. https://doi.org/10.1016/j.mtchem.2021.100459

43. Li, W., Martin, G. J. O., & Ashokkumar, M. (2021). Turbulence-induced formation of emulsion gels. Ultrasonics Sonochemistry, 81, 105847. https://doi.org/10.1016/j.ultsonch.2021.105847

44. Liu, L., & Ciftci, O. N. (2021). Effects of high oil compositions and printing parameters on food paste properties and printability in a 3D printing food processing model. Journal of Food Engineering, 288, 110135. https://doi.org/10.1016/j.jfoodeng.2020.110135

45. Liu, H., Xing, F., Yu, P., Zhe, M., Shakya, S., Liu, M., Xiang, Z., Duan, X., & Ritz, U. (2024). Multifunctional aerogel: A unique and advanced biomaterial for tissue regeneration and repair. Materials & Design, 243, 113091. https://doi.org/10.1016/j.matdes.2024.113091

46. Liu, Y., Liu, D., Wei, G., Ma, Y., Bhandari, B., & Zhou, P. (2018). 3D printed milk protein food simulant: Improving the printing performance of milk protein concentration by incorporating whey protein isolate. Innovative Food Science & Emerging Technologies, 49, 116–126. https://doi.org/10.1016/j.ifset.2018.07.018

47. Liu, Y., Zhang, W., Wang, K., Bao, Y., Regenstein, J. M., & Zhou, P. (2019). Fabrication of Gel-Like Emulsions with Whey Protein Isolate Using Microfluidization: Rheological Properties and 3D Printing Performance. Food and Bioprocess Technology, 12(12), 1967–1979. https://doi.org/10.1007/s11947-019-02344-5

48. Liu, Y., Zhang, Y., Cai, L., Zeng, Q., & Wang, P. (2024). Protein and protein-polysaccharide composites-based 3D printing: The properties, roles and opportunities in future functional foods. International Journal of Biological Macromolecules, 272, 132884. https://doi.org/10.1016/j.ijbiomac.2024.132884

49. Liu, Z., Chen, X., Li, H., Chitrakar, B., Zeng, Y., Hu, L., & Mo, H. (2024). 3D printing of nutritious dysphagia diet: Status and perspectives. Trends in Food Science and Technology, 147, 104478. https://doi.org/10.1016/j.tifs.2024.104478

50. Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science and Technology, 69, 83–94. https://doi.org/10.1016/j.tifs.2017.08.018

51. Livas, D., Trachioti, M., Banou, S., Angelopoulou, M., Economou, A., Prodromidis, M., Petrou, P., Kakabakos, S., & Kokkinos, C. (2021). 3D printed microcell featuring a disposable nanocomposite Sb/Sn immunosensor for quantum dot-based electrochemical determination of adulteration of ewe/goat’s cheese with cow’s milk. Sensors and Actuators B: Chemical, 334, 129614. https://doi.org/10.1016/j.snb.2021.129614

52. Llamas-Unzueta, R., Menéndez, J. A., Suárez, M., Fernández, A., & Montes-Morán, M. A. (2022). From whey robocasting to custom 3D porous carbons. Additive Manufacturing, 59, 103083. https://doi.org/10.1016/j.addma.2022.103083

53. Llamas-Unzueta, R., Reguera-García, A., Sanz, I., Martin, C., Quintanilla, A., Menéndez, J. A., & Montes-Morán, M. A. (2024). 3D printed catalytic stirrers with permeable blades made of porous carbon. Additive Manufacturing, 87, 104233. https://doi.org/10.1016/j.addma.2024.104233

54. Lu, Y., Schutyser, M. A. I., & Zhang, L. (2024). Enhancing 3D printing performance of O/W emulsions with asparagus fibre. Future Foods, 10, 100472. https://doi.org/10.1016/j.fufo.2024.100472

55. Ma, Y., & Zhang, L. (2022). Formulated food inks for extrusion-based 3D printing of personalized foods: A mini review. Current Opinion in Food Science, 44, 100803. https://doi.org/10.1016/j.cofs.2021.12.012

56. Maiz-Fernández, S., Pérez-Álvarez, L., Silván, U., Vilas-Vilela, J. L., & Lanceros-Méndez, S. (2022). pH-Induced 3D Printable Chitosan Hydrogels for Soft Actuation. Polymers, 14(3), 650. https://doi.org/10.3390/polym14030650

57. Mohapatra, J., Kumar, R., Basak, B., Saratale, R. G., Saratale, G. D., Mishra, A., Tripathy, S. K., Jeon, B.-H., & Chakrabortty, S. (2025). A review on generation, composition, and valorization of dairy processing sludge: A circular economy-based sustainable approach. Journal of Industrial and Engineering Chemistry, 143, 45–64. https://doi.org/10.1016/j.jiec.2024.08.045

58. Mu, X., Agostinacchio, F., Xiang, N., Pei, Y., Khan, Y., Guo, C., Cebe, P., Motta, A., & Kaplan, D. L. (2021). Recent advances in 3D printing with protein-based inks. Progress in Polymer Science, 115, 101375. https://doi.org/10.1016/j.progpolymsci.2021.101375

59. Oliveira, S. M., Fasolin, L. H., Vicente, A. A., Fuciños, P., & Pastrana, L. M. (2020). Printability, microstructure, and flow dynamics of phase-separated edible 3D inks. Food Hydrocolloids, 109, 106120. https://doi.org/10.1016/j.foodhyd.2020.106120

60. Riantiningtyas, R. R., Sager, V. F., Chow, C. Y., Thybo, C. D., Bredie, W. L. P., & Ahrné, L. (2021). 3D printing of a high protein yoghurt-based gel: Effect of protein enrichment and gelatine on physical and sensory properties. Food Research International, 147, 110517. https://doi.org/10.1016/j.foodres.2021.110517

61. Rong, L., Chen, X., Shen, M., Yang, J., Qi, X., Li, Y., & Xie, J. (2023). The application of 3D printing technology on starch-based product: A review. Trends in Food Science & Technology, 134, 149–161. https://doi.org/10.1016/j.tifs.2023.02.015

62. Sager, V. F., Munk, M. B., Hansen, M. S., Bredie, W. L. P., & Ahrné, L. (2020). Formulation of Heat-Induced Whey Protein Gels for Extrusion-Based 3D Printing. Foods, 10(1), 8. https://doi.org/10.3390/foods10010008

63. Shang, W., Sun, Y., Song, J., Zhang, P., Hou, Y., Wang, H., & Tan, M. (2023). Novel high internal phase oleogels-in-water pickering emulsions stabilized solely by whey protein isolate for 3D printing and fucoxanthin delivery. Food Hydrocolloids, 140, 108609. https://doi.org/10.1016/j.foodhyd.2023.108609

64. Shao, Y., Gan, N., Gao, B., & He, B. (2024). Sustainable 3D-printed β-galactosidase immobilization coupled with continuous-flow reactor for efficient lactose-free milk production. Chemical Engineering Journal, 481, 148557. https://doi.org/10.1016/j.cej.2024.148557

65. Sharma, D., Manzoor, M., Yadav, P., Sohal, J. S., Aseri, G. K., & Khare, N. (2018). Bio-valorization of dairy whey for bioethanol by stress-tolerant yeast. In Fungi and their Role in Sustainable Development: Current Perspectives (pp. 349–366). Springer Singapore. https://doi.org/10.1007/978-981-13-0393-7_20

66. Shen, C., Chen, W., Li, C., Chen, X., Cui, H., & Lin, L. (2023). 4D printing system stimulated by curcumin/whey protein isolate nanoparticles: A comparative study of sensitive color change and post-processing. Journal of Food Engineering, 342, 111357. https://doi.org/10.1016/j.jfoodeng.2022.111357

67. Shi, X., Liu, J., Liu, Q., Chen, Q., Wang, H., Sun, F., & Kong, B. (2025). Influence of different carrageenan contents on the rheological properties and 3D printing suitability of whey isolate protein-based emulsion gels. Food Hydrocolloids, 161, 110839. https://doi.org/10.1016/j.foodhyd.2024.110839

68. Shi, Y., Zhang, M., & Bhandari, B. (2021). Effect of addition of beeswax based oleogel on 3D printing of potato starch-protein system. Food Structure, 27, 100176. https://doi.org/10.1016/j.foostr.2021.100176

69. Su, A., & Al’Aref, S. J. (2018). History of 3D printing. In 3D Printing Applications in Cardiovascular Medicine (pp. 1–10). Elsevier. https://doi.org/10.1016/b978-0-12-803917-5.00001-8

70. Sümbelli, Y., Emir Diltemiz, S., Say, M. G., Ünlüer, Ö. B., Ersöz, A., & Say, R. (2021). In situ and non-cytotoxic cross-linking strategy for 3D printable biomaterials. Soft Matter, 17(4), 1008–1015. https://doi.org/10.1039/D0SM01734E

71. Sun, Y., Juncos Bombin, A. D., Boyd, P., Dunne, N., & McCarthy, H. O. (2022). Application of 3D printing & 3D bioprinting for promoting cutaneous wound regeneration. Bioprinting, 28, e00230. https://doi.org/10.1016/j.bprint.2022.e00230

72. Tamo, A. K., Djouonkep, L. D. W., & Selabi, N. B. S. (2024). 3D printing of polysaccharide-based hydrogel scaffolds for tissue engineering applications: A review. International Journal of Biological Macromolecules, 270, 132123. https://doi.org/10.1016/j.ijbiomac.2024.132123

73. Taneja, H., Salodkar, S. M., Singh Parmar, A., & Chaudhary, S. (2022). Hydrogel based 3D printing: Bio ink for tissue engineering. Journal of Molecular Liquids, 367, 120390. https://doi.org/10.1016/j.molliq.2022.120390

74. Thakur, R., Yadav, B. K., & Goyal, N. (2023). An insight into recent advancement in plant- and algae-based functional ingredients in 3D food printing ink formulations. Food and Bioprocess Technology, 16(9), 1919–1942. https://doi.org/10.1007/s11947-023-03040-1

75. Tricco, A., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of Internal Medicine, 169(7).

76. Tut, T. A., Cesur, S., Ilhan, E., Sahin, A., Yildirim, O. S., & Gunduz, O. (2022). Gentamicin-loaded polyvinyl alcohol/whey protein isolate/hydroxyapatite 3D composite scaffolds with drug delivery capability for bone tissue engineering applications. European Polymer Journal, 179, 111580. https://doi.org/10.1016/j.eurpolymj.2022.111580

77. Uranga, J., Carranza, T., Peñalba, M., Caba, K. de la, & Guerrero, P. (2024). Valorization of agar production residue as a filler in soy protein hydrogels for 3D printing. International Journal of Bioprinting, 9(4), 731. https://doi.org/10.18063/ijb.731

78. Uribe-Alvarez, R., Murphy, C. P., Coleman-Vaughan, C., & O’Shea, N. (2023). Evaluation of ionic calcium and protein concentration on heat- and cold-induced gelation of whey protein isolate gels as a potential food formulation for 3D food printing. Food Hydrocolloids, 142, 108777. https://doi.org/10.1016/j.foodhyd.2023.108777

79. Wang, Y., McClements, D. J., Bai, C., Xu, X., Sun, Q., Jiao, B., Miao, S., Wang, Q., & Dai, L. (2024). Application of proteins in edible inks for 3D food printing: A review. Trends in Food Science and Technology, 153, 104691. https://doi.org/10.1016/j.tifs.2024.104691

80. Wang, J., Jiang, X., Gan, H., Li, S., Peng, K., Sun, Y., Ma, M., & Yi, Y. (2025). Complexation-driven 3D printable whey protein-lotus root composite gels for dysphagia foods. Carbohydrate Polymers, 366, 123864. https://doi.org/10.1016/j.carbpol.2025.123864

81. Wang, Y., Wu, Y., Chen, Z., Zhong, B., & Liu, B. (2025). Intelligent food packaging materials: Principles, types, applications, and hydrophobization. Food Control, 171, 111138. https://doi.org/10.1016/j.foodcont.2025.111138

82. Wang, Z., Chen, F., Deng, Y., Tang, X., Li, P., Zhao, Z., Zhang, M., & Liu, G. (2024). Texture characterization of 3D printed fibrous whey protein-starch composite emulsion gels as dysphagia food: A comparative study on starch type. Food Chemistry, 458, 140302. https://doi.org/10.1016/j.foodchem.2024.140302

83. Wu, R., Jiang, J., An, F., Ma, X., & Wu, J. (2024). Research progress of 3D printing technology in functional food, powering the future of food. Trends in Food Science & Technology, 149, 104545. https://doi.org/10.1016/j.tifs.2024.104545

84. Xia, S., Wang, Q., Rao, Z., Lei, X., Zhao, J., Lei, L., & Ming, J. (2024). High internal phase pickering emulsions stabilized by zein/whey protein nanofibril complexes: Preparation and lycopene loading. Food Chemistry, 452, 139564. https://doi.org/10.1016/j.foodchem.2024.139564

85. Xian, D., Wu, L., Lin, K., Liu, P., Wu, S., Yuan, Y., & Xie, F. (2024). Augmenting corn starch gel printability for architectural 3D modeling for customized food. Food Hydrocolloids, 156, 110294. https://doi.org/10.1016/j.foodhyd.2024.110294

86. Xu, B., Jia, Y., Li, B., Ma, H., & Yang, W. (2023). Ultrastable emulsions constructed by self-assembly of two protein-polyphenol- anionic polysaccharide ternary complexes-stablized high internal phase emulsions. LWT, 176, 114517. https://doi.org/10.1016/j.lwt.2023.114517

87. Zhao, W., Li, Y., Xue, C., & Wei, Z. (2025). Fabrication of emulsion-templated oleogels with whey protein isolate and carboxymethyl chitosan for delivery of Antarctic krill oil. Food Research International, 213, 116611. https://doi.org/10.1016/j.foodres.2025.116611

88. Zhang, Y., Wang, Y., Dai, X., Li, Y., Jiang, B., Li, D., Liu, C., & Feng, Z. (2024). Biointerfacial supramolecular self-assembly of whey protein isolate nanofibrils on probiotic surface to enhance survival and application to 3D printing dysphagia foods. Food Chemistry, 460, 140720. https://doi.org/10.1016/j.foodchem.2024.140720

89. Zhang, R., Huang, H., Ai, R., Li, D., Xu, Y., Jin, W., & Luo, Z. (2024). Fabrication of telechelic DNA-bridged food emulsion gel as edible ink for 3D printing. Food Quality and Safety, 8. https://doi.org/10.1093/fqsafe/fyad063

90. Zheng, L., Li, D., Wang, L., & Wang, Y. (2024). Tailoring 3D-printed high internal phase emulsion-rice starch gels: Role of amylose in rheology and bioactive stability. Carbohydrate Polymers, 331, 121891. https://doi.org/10.1016/j.carbpol.2024.121891

91. Zheng, Z., Zhang, M., & Liu, Z. (2021). Investigation on evaluating the printable height and dimensional stability of food extrusion-based 3D printed foods. Journal of Food Engineering, 306, 110636. https://doi.org/10.1016/j.jfoodeng.2021.110636

92. Zhu, S., Ruiz De Azua, I. V., Feijen, S., Van Der Goot, A. J., Schutyser, M., & Stieger, M. (2021). How macroscopic structure of 3D printed protein bars filled with chocolate influences instrumental and sensory texture. LWT, 151, 112155. https://doi.org/10.1016/j.lwt.2021.112155


Дополнительные файлы

Рецензия

Для цитирования:


Большакова Е.И., Поклар Ульрих Н. Молочная сыворотка в 3DP: обзор предметного поля. FOOD METAENGINEERING. 2025;3(2). https://doi.org/10.37442/fme.2025.2.88

For citation:


Bolshakova E.I., Poklar Ulrih N. Whey in 3D Printing: A Scoping Review. FOOD METAENGINEERING. 2025;3(2). https://doi.org/10.37442/fme.2025.2.88

Просмотров: 3


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2949-6497 (Online)