Preview

FOOD METAENGINEERING

Расширенный поиск

Антинутриенты в растительных напитках на зерновом сырье: обзор предметного поля

https://doi.org/10.37442/fme.2023.1.3

Аннотация

Введение: Напитки на растительной основе на потребительском рынке позиционируются как альтернатива натуральному молоку, в том числе и по сваоей биологической ценности. Традиционное молоко-сырье характеризуется высокой биологической ценностью за счет оптимальной сбалансированности компонентов и легкой их усвояемости.  Однако в составе растительного сырья, используемого при производстве напитков, присутствуют антипитательные вещества. Антипитательные нутриенты могут ограничивать биодоступность основных питательных веществ, что приводит к обеднению рациона человека и снижению биологической ценности пищевых продуктов.

Цель данного обзора: комплексный анализ вариативных антипитательных факторов в растительных напитках из зернового сырья с оценкой методов и условий их ингибирования.

Материалы и методы: Данный обзор предметного поля проведен в соответствии с руководящими принципами PRISMA-ScR. Для подбора статей использовались базы данных SCOPUS, ScienceDirect, Google Scholar. Поиск был произведен за период 2017-2022 гг. В результате поиска было отобрано 77 публикаций из 35 стран мира. Протокол обзора предметного поля составлен и зарегистрирован на сайте Open Science Framework (https://osf.io/gcb3y).

Результаты:  Из 4432 отобранных публикаций 77 соответствовали критериям включения в обзор. В результате анализа отобранных публикаций были выявлены основные антипитательные вещества, которые присутствуют в зерновых напитках. К таким нутриентам относят фитиновую кислоту, фитаты, лектины, сапонины, оксалаты, ингибиторы ферментов. При этом авторы значительной части публикаций (70 %), посвященных вопросу наличия антинутриентов в продукте, исследуют данный вопрос в рамках технологии получения растительных напитков. Были выделены такие тренды, как негативное и позитивное действие антинутриентов, методы ингибирования антипитательных веществ. Полученные результаты позволили выделить в отдельное новое направление нетрадиционные методы ингибирования антинутриентов, которые ранее не были зафиксированы.

Выводы: Основной областью применения результатов исследования может быть расширение научно-практической базы данных об антипитательных веществах и практическое внедрение предложенных рекомендаций в производственный цикл. Полученные данные позволят значительно повысить биологическую ценность напитков на зерновом сырье.

Об авторе

Мария Николаевна Стрижко
ВНИМИ
Россия

младший научный сотрудник лаборатории молочных консервов



Список литературы

1. Бабикер, Э., Абдельсид, Б., Хассан, Х., & Адиамо, О. (2018). Effect of decortication methods on the chemical composition, antinutrients, Ca, P and Fe contents of two pearl millet cultivars during storage. World Journal of Science, Technology and Sustainable Development, 15(3), 278–286. https://doi.org/10.1108/WJSTSD-01–2018-0005

2. Галстян, А. Г., Аксёнова, Л. М., Лисицын, А. Б., Оганесянц, Л. А., & Петров, А. Н. (2019). Современные подходы к хранению и эффективной переработке сельскохозяйственной продукции для получения высококачественных пищевых продуктов. Вестник Российской Академии Наук, 89(5). https://doi.org/10.31857/S0869–5873895539-542

3. Джураева, Н. Р., Исабаев И. Б. (2020). Анализ технологического эффекта и функциональной направленности натурального сырья для проиводства кондитерских изделий. Материалы XIII Международной Научно-Технической Конференции (c. 220–221). МГУП.

4. Дулов М.И. (2019). Минеральный состав зерна сортов и линий овса голозерного в лесостепи Поволжья. Инновационное развитие науки и образования (с. 61–68). Самарский государственный аграрный университет.

5. Егорова, Е. Ю. (2019). «Немолочное молоко»: Обзор сырья и технологий. Ползуновский Вестник, 18(3), 25–34. https://doi.org/10.25712/astu.2072–8921.2018.03.005

6. Комарова, О. Н., Хавкин А. И. (2017). The role of cereals in human nutrition. Вопросы детской диетологии, 15(4), 45–51. https://doi.org/10.20953/1727–5784-2017–4-45–51

7. Крысанова, Ю. И. (2022). К вопросу о методах оценки концентрации молочного сахара в низко- и безлактозной продукции. Пищевая промышленность, 8. https://doi.org/10.52653/PPI.2022.8.8.017

8. Серебренникова, Е.С., Анисимова, Л. В., Попов Е. В., Земеров А. Е. (2019). Качество зернового сорго. Современные проблемы и технологии пищевых производств: Сборник трудов конференции (с. 308-310). Алтайский государственный технический университет им. И.И. Ползунова.

9. Харитонов, В. Д., Агаркова, Е. Ю., Кручинин, А. Г., Рязанцева, К. А., Королева, О. В., Федорова, Т. В., Зверева, Е. А., Тяжелова, Т. В., Малошенок, Л. Г., Ревякина, В. А., Георгиева, О. В., Пономарева, Н. В., Мельникова, Е. И., Лаптев, Г. Ю., Ильина, Л. А. (2015). Влияние нового кисломолочного продукта с гидролизатом сывороточных белков на переносимость и динамику проявлений атопического дерматита у детей с аллергией на белки коровьего молока. Вопросы питания, 84(5).

10. Харитонов, В. Д., Будрик, В. Г., Агаркова, Е. Ю., Ботина, С. Г., Березкина, К. А., Кручинин, А.Г., Пономарев, А.Н., Мельникова, Е. И. (2012). К вопросу о перспективных направлениях борьбы с аллергией. Техника и технология пищевых производств, 4(27).

11. Хуршудян, С. А., & Семененко, Н. Т. (2013). Ресурсосберегающие технологии и инновационные задачи в производстве напитков. Пищевая промышленность, 7, 16–17.

12. Abdulwaliyu, I., Arekemase, S. O., Adudu, J. A., Batari, M. L., Egbule, M. N., & Okoduwa, S. I. R. (2019). Investigation of the medicinal significance of phytic acid as an indispensable anti-nutrient in diseases. Clinical Nutrition Experimental, 28, 42–61. https://doi.org/10.1016/j.yclnex.2019.10.002

13. Achi, O. K., & Asamudo, N. U. (2019). Cereal-Based fermented foods of Africa as functional foods. In J.-M. Mérillon & K. G. Ramawat (Eds.), Bioactive Molecules in Food (pp. 1527–1558). Springer International Publishing. https://doi.org/10.1007/978–3-319–78030-6_31

14. Adebo, O. A., & Medina-Meza, I. G. (2020). Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules, 25(4), 927. https://doi.org/10.3390/MOLECULES25040927

15. Aderibigbe, O. R., Ezekiel, O. O., Owolade, S. O., Korese, J. K., Sturm, B., & Hensel, O. (2020). Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Critical Reviews in Food Science and Nutrition, 62(3), 656–669. https://doi.org/10.1080/10408398.2020.1825323

16. Adise, S., Gavdanovich, I., & Zellner, D. A. (2015). Looks like chicken: Exploring the law of similarity in evaluation of foods of animal origin and their vegan substitutes. Food Quality and Preference, 41, 52–59. https://doi.org/10.1016/J.FOODQUAL.2014.10.007

17. Ahangaran, M., Afanasev, D. A., Chernukha, I. M., Mashentseva, N. G., & Gharaviri, M. (2022). Bioactive peptides and antinutrients in chickpea: Description and properties (a review). Proceedings on applied botany, genetics and breeding, 183(1), 214–223. https://doi.org/10.30901/2227–8834-2022–1-214–223

18. Ajayi, I. O., Otemuyiwa, I. O., Adeyanju, A. A., & Falade, O. S. (2021). Vegetable polyphenols inhibit starch digestibility and phenolic availability from composite carbohydrate foods in-vitro. Journal of Agriculture and Food Research, 3, 100116. https://doi.org/10.1016/j.jafr.2021.100116

19. Alemayehu, G. F., Forsido, S. F., Tola, Y. B., Teshager, M. A., Assegie, A. A., & Amare, E. (2021). Proximate, mineral and anti-nutrient compositions of oat grains (Avena sativa) cultivated in Ethiopia: Implications for nutrition and mineral bioavailability. Heliyon, 7(8), e07722. https://doi.org/10.1016/j.heliyon.2021.e07722

20. Astley, S., & Finglas, P. (2016). Nutrition and health. Reference Module in Food Science. https://doi.org/10.1016/B978–0-08–100596-5.03425–9

21. Atuna, R. A., Ametei, P. N., Bawa, A.-A., & Amagloh, F. K. (2022). Traditional processing methods reduced phytate in cereal flour, improved nutritional, functional and rheological properties. Scientific African, 15, e01063. https://doi.org/10.1016/j.sciaf.2021.e01063

22. Awulachew, M. T. (2022). A Review of anti-nutritional factors in Plant Based Foods. Food Science & Nutrition Research, Ethiopian Institute of Agricultural Research, 7(3), 223–236.

23. Aydar, E. F., Tutuncu, S., & Ozcelik, B. (2020). Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. Journal of Functional Foods, 70, 103975. https://doi.org/10.1016/J.JFF.2020.103975

24. Babiker, E., Abdelseed, B., Hassan, H., & Adiamo, O. (2018). Effect of decortication methods on the chemical composition, antinutrients, Ca, P and Fe contents of two pearl millet cultivars during storage. World Journal of Science, Technology and Sustainable Development, 15(3), 278–286. https://doi.org/10.1108/WJSTSD-01–2018-0005

25. Bahwere, P., Balaluka, B., Wells, J. C., Mbiribindi, C. N., Sadler, K., Akomo, P., Dramaix-Wilmet, M., & Collins, S. (2016). Cereals and pulse-based ready-to-use therapeutic food as an alternative to the standard milk- and peanut paste–based formulation for treating severe acute malnutrition: A noninferiority, individually randomized controlled efficacy clinical trial. The American Journal of Clinical Nutrition, 103(4), 1145–1161. https://doi.org/10.3945/ajcn.115.119537

26. Bayless, T. M., Brown, E., & Paige, D. M. (2017). Lactase Non-persistence and Lactose Intolerance. Current Gastroenterology Reports, 19(5), 1–11. https://doi.org/10.1007/S11894–017-0558–9/FIGURES/1

27. Bekiroglu, H., Goktas, H., Karaibrahim, D., Bozkurt, F., & Sagdic, O. (2022). Determination of rheological, melting and sensorial properties and volatile compounds of vegan ice cream produced with fresh and dried walnut milk. International Journal of Gastronomy and Food Science, 28, 100521. https://doi.org/10.1016/J.IJGFS.2022.100521

28. Bocker, R., & Silva, E. K. (2022). Innovative technologies for manufacturing plant-based non-dairy alternative milk and their impact on nutritional, sensory and safety aspects. Future Foods, 5, 100098. https://doi.org/10.1016/J.FUFO.2021.100098

29. Bonke, A., Sieuwerts, S., & Petersen, I. L. (2020). Amino Acid Composition of Novel Plant Drinks from Oat, Lentil and Pea. Foods, 9(4), 429. https://doi.org/10.3390/FOODS9040429

30. Borin, J. F., Knight, J., Holmes, R. P., Joshi, S., Goldfarb, D. S., & Loeb, S. (2022). Plant-based milk alternatives and risk factors for kidney stones and chronic kidney disease. Journal of Renal Nutrition, 32(3), 363–365. https://doi.org/10.1053/j.jrn.2021.03.011

31. Budhwar, S., Sethi, K., & Chakraborty, M. (2020). Efficacy of germination and probiotic fermentation on underutilized cereal and millet grains. Food Production, Processing and Nutrition, 2(1), 1–17. https://doi.org/10.1186/S43014–020-00026-W/FIGURES/2

32. Bunkar, D., Goyal, S., Meena, K. K., & Kamalvanshi, V. (2021). Nutritional, Functional Role of Kodo Millet and its Processing: A Review. International Journal of Current Microbiology and Applied Sciences, 10, 1972–1985.

33. Cardello, A. V., Llobell, F., Giacalone, D., Roigard, C. M., & Jaeger, S. R. (2022). Plant-based alternatives vs dairy milk: Consumer segments and their sensory, emotional, cognitive and situational use responses to tasted products. Food Quality and Preference, 100, 104599. https://doi.org/10.1016/J.FOODQUAL.2022.104599

34. Chalupa-Krebzdak, S., Long, C. J., & Bohrer, B. M. (2018). Nutrient density and nutritional value of milk and plant-based milk alternatives. International Dairy Journal, 87. https://doi.org/10.1016/j.idairyj.2018.07.018

35. Clark, B. E., Pope, L., & Belarmino, E. H. (2022). Personal bias in nutrition advice: A survey of health professionals’ recommendations regarding dairy and plant-based dairy alternatives. PEC Innovation, 1, 100005. https://doi.org/10.1016/J.PECINN.2021.100005

36. Dahdouh, S., Grande, F., Espinosa, S. N., Vincent, A., Gibson, R., Bailey, K., King, J., Rittenschober, D., & Charrondière, U. R. (2019). Development of the FAO/INFOODS/IZINCG global food composition database for phytate. Journal of Food Composition and Analysis, 78, 42–48. https://doi.org/10.1016/j.jfca.2019.01.023

37. Das, A. K., Islam, Md. N., Faruk, Md. O., Ashaduzzaman, Md., & Dungani, R. (2020). Review on tannins: Extraction processes, applications and possibilities. South African Journal of Botany, 135, 58–70. https://doi.org/10.1016/j.sajb.2020.08.008

38. de Boer, J., & Aiking, H. (2019). Strategies towards healthy and sustainable protein consumption: A transition framework at the levels of diets, dishes, and dish ingredients. Food Quality and Preference, 73, 171–181. https://doi.org/10.1016/J.FOODQUAL.2018.11.012

39. Dey, N., Kumari, N., Bhagat, D., & Bhattacharya, S. (2018). Smart optical probe for ‘equipment-free’ detection of oxalate in biological fluids and plant-derived food items. Tetrahedron, 74(34), 4457–4465. https://doi.org/10.1016/j.tet.2018.06.052

40. Dhakal, S., Liu, C., Zhang, Y., Roux, K. H., Sathe, S. K., Balasubramaniam, V. M. (2014). Effect of high pressure processing on the immunoreactivity of almond milk. Food Research International, 62, 215–222. https://doi.org/10.1016/j.foodres.2014.02.021

41. Dhesi, A., Ashton, G., Raptaki, M., & Makwana, N. (2020). Cow’s milk protein allergy. Paediatrics and Child Health, 30(7), 255–260. https://doi.org/10.1016/J.PAED.2020.04.003

42. do Nascimento, L. Á., Abhilasha, A., Singh, J., Elias, M. C., & Colussi, R. (2022). Rice germination and its impact on technological and nutritional properties: A review. Rice Science, 29(3), 201–215. https://doi.org/10.1016/j.rsci.2022.01.009

43. Adeyeye, E. I., Olaleye, A. A., Aremu, M. O., Atere, J. O., & Idowu, O. T. (2020). Sugar, antinutrient and food properties levels in raw, fermented and germinated pearl millet grains. FUW Trends in Science and Technology, 5(3), 745–758.

44. Escobar-Sáez, D., Montero-Jiménez, L., García-Herrera, P., & Sánchez-Mata, M. C. (2022). Plant-based drinks for vegetarian or vegan toddlers: Nutritional evaluation of commercial products, and review of health benefits and potential concerns. Food Research International, 160, 111646. https://doi.org/10.1016/j.foodres.2022.111646

45. Faba-Rodriguez, R., Gu, Y., Salmon, M., Dionisio, G., Brinch-Pedersen, H., Brearley, C. A., & Hemmings, A. M. (2022). Structure of a cereal purple acid phytase provides new insights to phytate degradation in plants. Plant Communications, 3(2), 100305. https://doi.org/10.1016/j.xplc.2022.100305

46. Faris, M. A.-I. E., Takruri, H. R., & Issa, A. Y. (2013). Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Mediterranean Journal of Nutrition and Metabolism, 6(1), 3–16. https://doi.org/10.3233/s12349–012-0109–8

47. Ferruzzi, M. G., Kruger, J., Mohamedshah, Z., Debelo, H., & Taylor, J. R. N. (2020). Insights from in vitro exploration of factors influencing iron, zinc and provitamin A carotenoid bioaccessibility and intestinal absorption from cereals. Journal of Cereal Science, 96, 103126. https://doi.org/10.1016/j.jcs.2020.103126

48. Ganguly, S., Sabikhi, L., & Singh, A. K. (2022). Effect of probiotic fermentation on physico-chemical and nutritional parameters of milk-cereal based composite substrate. Journal of Food Science and Technology, 59(8), 3073–3085. https://doi.org/10.1007/s13197–021-05350–8

49. Graça, J., Truninger, M., Junqueira, L., & Schmidt, L. (2019). Consumption orientations may support (or hinder) transitions to more plant-based diets. Appetite, 140, 19–26. https://doi.org/10.1016/J.APPET.2019.04.027

50. Grases, F., Prieto, R. M., & Costa-Bauza, A. (2017). Dietary Phytate and Interactions with Mineral Nutrients. In O. Gutiérrez, K. Kalantar-Zadeh, & R. Mehrotra (Eds.), Clinical Aspects of Natural and Added Phosphorus in Foods (pp. 175–183). Springer. https://doi.org/10.1007/978-1-4939-6566-3_12

51. Grundy, M. M. L., Momanyi, D. K., Holland, C., Kawaka, F., Tan, S., Salim, M., Boyd, B. J., Bajka, B., Mulet-Cabero, A.-I., Bishop, J., & Owino, W. O. (2020). Effects of grain source and processing methods on the nutritional profile and digestibility of grain amaranth. Journal of Functional Foods, 72, 104065. https://doi.org/10.1016/j.jff.2020.104065

52. Gulati, P., Li, A., Holding, D., Santra, D., Zhang, Y., & Rose, D. J. (2017). Heating reduces proso millet protein digestibility via formation of hydrophobic aggregates. Journal of Agricultural and Food Chemistry, 65(9), 1952–1959. https://doi.org/10.1021/acs.jafc.6b05574

53. Gunawan, S., Dwitasari, I., Rahmawati, N., Darmawan, R., Wirawasista Aparamarta, H., & Widjaja, T. (2022). Effect of process production on antinutritional, nutrition, and physicochemical properties of modified sorghum flour. Arabian Journal of Chemistry, 15(10), 104134. https://doi.org/10.1016/j.arabjc.2022.104134

54. Hassan, Z. M., Sebola, N. A., & Mabelebele, M. (2021). The nutritional use of millet grain for food and feed: A review. Agriculture & Food Security, 10(1), 16. https://doi.org/10.1186/s40066–020-00282–6

55. Hendek Ertop, M., & Bektaş, M. (2018). Enhancement of bioavailable micronutrients and reduction of antinutrients in foods with some processes. Food and Health, 4(3), 159–165. https://doi.org/10.3153/FH18016

56. Huynh, N. K., Nguyen, D. H. M., & Nguyen, H. V. H. (2022). Effects of processing on oxalate contents in plant foods: A review. Journal of Food Composition and Analysis, 112, 104685. https://doi.org/10.1016/j.jfca.2022.104685

57. Ibragimova, Z. A., & Kuluev, B. R. (2020). Molecular basis of food and feed qualities of rye (Secale sereale) grain. Biomics, 12(1), 8–26. https://doi.org/10.31301/2221–6197.bmcs.2020–2

58. Ignat, M. V., Salanță, L. C., Pop, O. L., Pop, C. R., Tofană, M., Mudura, E., Coldea, T. E., Borșa, A., & Pasqualone, A. (2020). Current functionality and potential improvements of non-alcoholic fermented cereal beverages. Foods, 9(8), Article 8. https://doi.org/10.3390/foods9081031

59. Jaeger, S. R., & Giacalone, D. (2021). Barriers to consumption of plant-based beverages: A comparison of product users and non-users on emotional, conceptual, situational, conative and psychographic variables. Food Research International, 144, 110363. https://doi.org/10.1016/J.FOODRES.2021.110363

60. Jeske, S., Zannini, E., & Arendt, E. K. (2017). Evaluation of physicochemical and glycaemic properties of commercial plant-based milk substitutes. Plant Foods for Human Nutrition, 72(1), 26–33. https://doi.org/10.1007/S11130–016-0583–0

61. Jeske, S., Zannini, E., & Arendt, E. K. (2018). Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Research International, 110, 42–51. https://doi.org/10.1016/J.FOODRES.2017.03.045

62. Joye, I. (2019). Protein digestibility of cereal products. Foods, 8(6), 199. https://doi.org/10.3390/FOODS8060199

63. Kaiser, N., Douches, D., Dhingra, A., Glenn, K. C., Herzig, P. R., Stowe, E. C., & Swarup, S. (2020). The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends in Food Science & Technology, 100, 51–66. https://doi.org/10.1016/j.tifs.2020.03.042

64. Karmakar, A., Bhattacharya, S., Sengupta, S., Ali, N., Sarkar, S. N., Datta, K., & Datta, S. K. (2020). RNAi-Mediated Silencing of ITPK Gene Reduces Phytic Acid Content, Alters Transcripts of Phytic Acid Biosynthetic Genes, and Modulates Mineral Distribution in Rice Seeds. Rice Science, 27(4), 315–328. https://doi.org/10.1016/j.rsci.2020.05.007

65. Kaur, M., Asthir, B., & Mahajan, G. (2017). Variation in antioxidants, bioactive compounds and antioxidant capacity in germinated and ungerminated grains of ten rice cultivars. Rice Science, 24(6), 349–359. https://doi.org/10.1016/j.rsci.2017.08.002

66. Kaur, P., Purewal, S. S., Sandhu, K. S., Kaur, M., & Salar, R. K. (2019). Millets: A cereal grain with potent antioxidants and health benefits. Journal of Food Measurement and Characterization, 13(1), 793–806. https://doi.org/10.1007/s11694–018-9992–0

67. Komarova, O. N., & Khavkin, A. (2017). The role of cereals in human nutrition. Voprosy Detskoi Dietologii, 15, 45–51. https://doi.org/10.20953/1727–5784-2017–4-45–51

68. Konozy, E., Osman, M., & Dirar, A. (2022). Plant lectins as potent anti-coronaviruses, anti-inflammatory, antinociceptive and antiulcer agents. Saudi Journal of Biological Sciences, 29(6), 103301. https://doi.org/10.1016/j.sjbs.2022.103301

69. López-Moreno, M., Garcés-Rimón, M., & Miguel, M. (2022). Antinutrients: Lectins, goitrogens, phytates and oxalates, friends or foe? Journal of Functional Foods, 89, 104938. https://doi.org/10.1016/J.JFF.2022.104938

70. Mäkelä, N., Rosa-Sibakov, N., Wang, Y.-J., Mattila, O., Nordlund, E., & Sontag-Strohm, T. (2021). Role of β-glucan content, molecular weight and phytate in the bile acid binding of oat β-glucan. Food Chemistry, 358, 129917. https://doi.org/10.1016/j.foodchem.2021.129917

71. Mäkinen, O. E., Uniacke-Lowe, T., O’Mahony, J. A., & Arendt, E. K. (2015). Physicochemical and acid gelation properties of commercial UHT-treated plant-based milk substitutes and lactose free bovine milk. Food Chemistry, 168, 630–638. https://doi.org/10.1016/j.foodchem.2014.07.036

72. Manzoor, M. F., Siddique, R., Hussain, A., Ahmad, N., Rehman, A., Siddeeg, A., Alfarga, A., Alshammari, G. M., & Yahya, M. A. (2021). Thermosonication effect on bioactive compounds, enzymes activity, particle size, microbial load, and sensory properties of almond (Prunus dulcis) milk. Ultrasonics Sonochemistry, 78, 105705.

73. https://doi.org/10.1016/J.ULTSONCH.2021.105705

74. Manzoor, M., Singh, D., Kumar Aseri, G., Sohal, J. S., Vij, S., & Sharma, D. (2021). Role of lacto-fermentations in reduction of antinutrients in plant-based foods. Journal of Applied Biology and Biotechnology, 9(3). https://doi.org/10.7324/JABB.2021.9302

75. Martemucci, G., Portincasa, P., Di Ciaula, A., Mariano, M., Centonze, V., & D’Alessandro, A. G. (2022). Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mechanisms of Ageing and Development, 206, 111707. https://doi.org/10.1016/J.MAD.2022.111707

76. Masisi, K., Beta, T., & Moghadasian, M. H. (2016). Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chemistry, 196, 90–97. https://doi.org/10.1016/j.foodchem.2015.09.021

77. Mishra, A., Behura, A., Mawatwal, S., Kumar, A., Naik, L., Mohanty, S. S., Manna, D., Dokania, P., Mishra, A., Patra, S. K., & Dhiman, R. (2019). Structure-function and application of plant lectins in disease biology and immunity. Food and Chemical Toxicology, 134, 110827. https://doi.org/10.1016/J.FCT.2019.110827

78. Mohapatra, D., Patel, A. S., Kar, A., Deshpande, S. S., & Tripathi, M. K. (2019). Effect of different processing conditions on proximate composition, anti-oxidants, anti-nutrients and amino acid profile of grain sorghum. Food Chemistry, 271, 129–135. https://doi.org/10.1016/J.FOODCHEM.2018.07.196

79. Munekata, P. E. S., Domínguez, R., Budaraju, S., Roselló-Soto, E., Barba, F. J., Mallikarjunan, K., Roohinejad, S., & Lorenzo, J. M. (2020). Effect of innovative food processing technologies on the physicochemical and nutritional properties and quality of non-dairy plant-based beverages. Foods, 9(3), Article 3. https://doi.org/10.3390/foods9030288

80. Mylan, J., Morris, C., Beech, E., & Geels, F. W. (2019). Rage against the regime: Niche-regime interactions in the societal embedding of plant-based milk. Environmental Innovation and Societal Transitions, 31, 233–247. https://doi.org/10.1016/J.EIST.2018.11.001

81. Nath, H., Samtiya, M., & Dhewa, T. (2022). Beneficial attributes and adverse effects of major plant-based foods anti-nutrients on health: A review. Human Nutrition & Metabolism, 28, 200147. https://doi.org/10.1016/j.hnm.2022.200147

82. Nikbakht Nasrabadi, M., Sedaghat Doost, A., & Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118, 106789. https://doi.org/10.1016/j.foodhyd.2021.106789

83. Nissar, J., Ahad, T., & Rashid Naik, H. (2017). A review phytic acid: As antinutrient or nutraceutical Design and development of hand operated and power operated walnut cracker View project Post Harvest Technology View project. Journal of Pharmacognosy and Phytochemistry, 6, 1554–1560.

84. Nkhata, S. G., Ayua, E., Kamau, E. H., & Shingiro, J. B. (2018). Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science & Nutrition, 6(8), 2446–2458. https://doi.org/10.1002/FSN3.846

85. Oke, E. K., Ayofemi, S., Adeyeye, O., & Olorode, O. O. (2022). Complementary Foods and Its Processing Methods: A Review. Croatian Journal of Food Science and Technology, 14(1), 5. https://doi.org/10.17508/CJFST.2022.14.1.05

86. Olawoye, B. T., & Gbadamosi, S. O. (2017). Effect of different treatments on in vitro protein digestibility, antinutrients, antioxidant properties and mineral composition of Amaranthus viridis seed. Cogent Food & Agriculture, 3(1). https://doi.org/10.1080/23311932.2017.1296402

87. Patra, T., Rinnan, Å., & Olsen, K. (2021). The physical stability of plant-based drinks and the analysis methods thereof. Food Hydrocolloids, 118, 106770. https://doi.org/10.1016/J.FOODHYD.2021.106770

88. Pei, R., Liu, X., & Bolling, B. (2020). Flavonoids and gut health. Current Opinion in Biotechnology, 61, 153–159. https://doi.org/10.1016/J.COPBIO.2019.12.018

89. Penha, C. B., Santos, V. D. P., Speranza, P., & Kurozawa, L. E. (2021). Plant-based beverages: Ecofriendly technologies in the production process. Innovative Food Science & Emerging Technologies, 72, 102760. https://doi.org/10.1016/J.IFSET.2021.102760

90. Petroski, W., & Minich, D. M. (2020). Is there such a thing as “anti-nutrients”? A narrative review of perceived problematic plant compounds. Nutrients, 12(10), 2929. https://doi.org/10.3390/NU12102929

91. Pineli, L. de L. de O., Botelho, R. B. A., Zandonadi, R. P., Solorzano, J. L., de Oliveira, G. T., Reis, C. E. G., & Teixeira, D. da S. (2015). Low glycemic index and increased protein content in a novel quinoa milk. LWT — Food Science and Technology, 63(2), 1261–1267. https://doi.org/10.1016/j.lwt.2015.03.094

92. Popova, A., & Mihaylova, D. (2019). Antinutrients in plant-based foods: A review. The Open Biotechnology Journal, 13(1), 68–76. https://doi.org/ 10.2174/1874070701913010068

93. Poutanen, K. S., Kårlund, A. O., Gómez-Gallego, C., Johansson, D. P., Scheers, N. M., Marklinder, I. M., Eriksen, A. K., Silventoinen, P. C., Nordlund, E., Sozer, N., Hanhineva, K. J., Kolehmainen, M., & Landberg, R. (2022). Grains — a major source of sustainable protein for health. Nutrition Reviews, 80(6), 1648–1663. https://doi.org/10.1093/nutrit/nuab084

94. Punniyamoorthy, S., Kanchana, S., Maheswari, U., & Ganapathyswamy, H. (2020). Optimization of parameters for the extraction of millet milk for product development. Research Journal of Agricultural Sciences, 9(6), 1345–1349.

95. Quattrini, M., Bernardi, C., Stuknytė, M., Masotti, F., Passera, A., Ricci, G., Vallone, L., De Noni, I., Brasca, M., & Fortina, M. G. (2018). Functional characterization of Lactobacillus plantarum ITEM 17215: A potential biocontrol agent of fungi with plant growth promoting traits, able to enhance the nutritional value of cereal products. Food Research International, 106, 936–944. https://doi.org/10.1016/J.FOODRES.2018.01.074

96. Raes, Katleen, Dries Knockaert, Karin Struijs, and John Van Camp. 2014. ‘Role of processing on bioaccessibility of minerals: Influence of localization of minerals and anti-nutritional factors in the plant’. Trends in Food Science & Technology, 37(1), 32–41.

97. Raguindin, P. F., Adam Itodo, O., Stoyanov, J., Dejanovic, G. M., Gamba, M., Asllanaj, E., inder, B., Bussler, W., Metzger, B., Muka, T., Glisic, M., & Kern, H. (2021). A systematic review of phytochemicals in oat and buckwheat. Food Chemistry, 338, 127982. https://doi.org/10.1016/j.foodchem.2020.127982

98. Rasika, D. M., Vidanarachchi, J. K., Rocha, R. S., Balthazar, C. F., Cruz, A. G., Sant’Ana, A. S., & Ranadheera, C. S. (2021). Plant-based milk substitutes as emerging probiotic carriers. Current Opinion in Food Science, 38, 8–20. https://doi.org/10.1016/j.cofs.2020.10.025

99. Ray, M., Ghosh, K., Singh, S., & Chandra Mondal, K. (2016). Folk to functional: An explorative overview of rice-based fermented foods and beverages in India. Journal of Ethnic Foods, 3(1), 5–18. https://doi.org/10.1016/j.jef.2016.02.002

100. Rincon, L., Braz Assunção Botelho, R., & de Alencar, E. R. (2020). Development of novel plant-based milk based on chickpea and coconut. LWT — Food Science and Technology, 128, 109479. https://doi.org/10.1016/J.LWT.2020.109479

101. Rodríguez-España, M., Figueroa-Hernández, C. Y., Figueroa-Cárdenas, J. de D., Rayas-Duarte, P., & Hernández-Estrada, Z. J. (2022). Effects of germination and lactic acid fermentation on nutritional and rheological properties of sorghum: A graphical review. Current Research in Food Science, 5, 807–812. https://doi.org/10.1016/j.crfs.2022.04.014

102. Ruby, M. B. (2012). Vegetarianism. A blossoming field of study. Appetite, 58(1), 141–150. https://doi.org/10.1016/J.APPET.2011.09.019

103. Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production, Processing and Nutrition, 2(1), 1–14. https://doi.org/10.1186/S43014–020-0020–5

104. Samtiya, M., Aluko, R. E., Puniya, A. K., & Dhewa, T. (2021). Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. Fermentation, 7(2), 63. https://doi.org/10.3390/FERMENTATION7020063

105. Santa María, C., Revilla, E., Rodríguez-Morgado, B., Castaño, A., Carbonero, P., Gordillo, B., Cert, R., & Parrado, J. (2016). Effect of rice parboiling on the functional properties of an enzymatic extract from rice bran. Journal of Cereal Science, 72, 54–59. https://doi.org/10.1016/j.jcs.2016.09.010

106. Sarangapany, A. K., Murugesan, A., Annamalai, A. S., Balasubramanian, A., & Shanmugam, A. (2022). An overview on ultrasonically treated plant-based milk and its properties — A Review. Applied Food Research, 2(2), 100130. https://doi.org/10.1016/j.afres.2022.100130

107. Schiano, A. N., Nishku, S., Racette, C. M., & Drake, M. A. (2022). Parents’ implicit perceptions of dairy milk and plant-based milk alternatives. Journal of Dairy Science, 105(6), 4946–4960. https://doi.org/10.3168/JDS.2021–21626

108. Sharp, E., D’Cunha, N. M., Ranadheera, C. S., Vasiljevic, T., Panagiotakos, D. B., & Naumovski, N. (2021). Effects of lactose-free and low-lactose dairy on symptoms of gastrointestinal health: A systematic review. International Dairy Journal, 114, 104936. https://doi.org/10.1016/J.IDAIRYJ.2020.104936

109. Shen, Y., Jin, L., Xiao, P., Lu, Y., & Bao, J. (2009). Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. Journal of Cereal Science, 49(1), 106–111. https://doi.org/10.1016/j.jcs.2008.07.010

110. Silva, A. R. A., Silva, M. M. N., & Ribeiro, B. D. (2020). Health issues and technological aspects of plant-based alternative milk. Food Research International, 131. https://doi.org/10.1016/j.foodres.2019.108972

111. Silva, B. Q., & Sergiy, S. (2022). Review on milk substitutes from an environmental and nutritional point of view. Applied Food Research, 100105. https://doi.org/10.1016/J.AFRES.2022.100105

112. Silva, J. G. S., Rebellato, A. P., Caramês, E. T. dos S., Greiner, R., & Pallone, J. A. L. (2020). In vitro digestion effect on mineral bioaccessibility and antioxidant bioactive compounds of plant-based beverages. Food Research International, 130, 108993. https://doi.org/10.1016/J.FOODRES.2020.108993

113. Singhal, S., Baker, R. D., & Baker, S. S. (2017). A Comparison of the Nutritional Value of Cow’s Milk and Nondairy Beverages. Journal of Pediatric Gastroenterology and Nutrition, 64(5), 799–805. https://doi.org/10.1097/MPG.0000000000001380

114. Stewart, H., Kuchler, F., Cessna, J., & Hahn, W. (2020). Are Plant-Based Analogues Replacing Cow’s Milk in the American Diet? Journal of Agricultural and Applied Economics, 52(4), 562–579. https://doi.org/10.1017/AAE.2020.16

115. Suneetha, J., Naga, M., Srujana, S., Kumari, A., & Prathyusha, P. (2019). Processing technologies and health benefits of quinoa. The Pharma Innovation Journal, 8(5), 155–160.

116. Tangyu, M., Muller, J., Bolten, C. J., & Wittmann, C. (2019). Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Applied Microbiology and Biotechnology, 103(23), 9263–9275. https://doi.org/10.1007/s00253–019-10175–9

117. Tello, A., Aganovic, K., Parniakov, O., Carter, A., Heinz, V., & Smetana, S. (2021). Product development and environmental impact of an insect-based milk alternative. Future Foods, 4, 100080. https://doi.org/10.1016/J.FUFO.2021.100080

118. Tsafrakidou, P., Michaelidou, A.-M., & G. Biliaderis, C. (2020). Fermented cereal-based products: nutritional aspects, possible impact on gut microbiota and health implications. Foods, 9(6), Article 6. https://doi.org/10.3390/foods9060734

119. Vaikma, H., Kaleda, A., Rosend, J., & Rosenvald, S. (2021). Market mapping of plant-based milk alternatives by using sensory (RATA) and GC analysis. Future Foods, 4, 100049. https://doi.org/10.1016/J.FUFO.2021.100049

120. Vanga, S. K., & Raghavan, V. (2018). How well do plant based alternatives fare nutritionally compared to cow’s milk? Journal of Food Science and Technology, 55(1), 10–20. https://doi.org/10.1007/s13197–017-2915-y

121. Verduci, E., D’Elios, S., Cerrato, L., Comberiati, P., Calvani, M., Palazzo, S., Martelli, A., Landi, M., Trikamjee, T., & Peroni, D. G. (2019). Cow’s milk substitutes for children: Nutritional aspects of milk from different mammalian species, special formula and plant-based beverages. Nutrients, 11(8), Article 8. https://doi.org/10.3390/nu11081739

122. Verni, M., Demarinis, C., Rizzello, C. G., & Baruzzi, F. (2020). Design and Characterization of a Novel Fermented Beverage from Lentil Grains. Foods, 9(7), Article 7. https://doi.org/10.3390/foods9070893

123. Wang, H., Huang, X., Tan, H., Chen, X., Chen, C., & Nie, S. (2022). Interaction between dietary fiber and bifidobacteria in promoting intestinal health. Food Chemistry, 393, 133407. https://doi.org/10.1016/J.FOODCHEM.2022.133407

124. Wilson, J. (2005). Milk Intolerance: Lactose Intolerance and Cow’s Milk Protein Allergy. Newborn and Infant Nursing Reviews, 5(4), 203–207. https://doi.org/10.1053/J.NAINR.2005.08.004

125. Xiang, H., Sun-Waterhouse, D., Waterhouse, G. I. N., Cui, C., & Ruan, Z. (2019). Fermentation-enabled wellness foods: A fresh perspective. Food Science and Human Wellness, 8(3), 203–243. https://doi.org/10.1016/j.fshw.2019.08.003

126. Yadav, S., Mishra, S., & Pradhan, R. C. (2021). Ultrasound-assisted hydration of finger millet (Eleusine Coracana) and its effects on starch isolates and antinutrients. Ultrasonics Sonochemistry, 73, 105542. https://doi.org/10.1016/j.ultsonch.2021.105542

127. Yousseef, M., Lafarge, C., Valentin, D., Lubbers, S., & Husson, F. (2016). Fermentation of cow milk and/or pea milk mixtures by different starter cultures: Physico-chemical and sensorial properties. LWT — Food Science and Technology, 69, 430–437. https://doi.org/10.1016/j.lwt.2016.01.060

128. Ziarno, M., & Cichońska, P. (2021). Lactic Acid Bacteria-Fermentable Cereal- and Pseudocereal-Based Beverages. Microorganisms, 9(12), 2532. https://doi.org/10.3390/MICROORGANISMS9122532


Рецензия

Для цитирования:


Стрижко М.Н. Антинутриенты в растительных напитках на зерновом сырье: обзор предметного поля. FOOD METAENGINEERING. 2023;1(1). https://doi.org/10.37442/fme.2023.1.3

For citation:


Strizhko M.N. Antinutrients in Grain-Based Plant Drinks: Scoping Review. FOOD METAENGINEERING. 2023;1(1). (In Russ.) https://doi.org/10.37442/fme.2023.1.3

Просмотров: 835


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2949-6497 (Online)