Preview

FOOD METAENGINEERING

Advanced search

Chemical Contaminants in Ready-to-Eat Food Products: Control and Contamination Mitigation (A Scoping Review)

https://doi.org/10.37442/fme.2025.2.78

Abstract

Introduction: Ensuring the safety of ready-to-eat food products requires contamination control at all stages of their life cycle—from the procurement of food raw materials to storage and distribution. In light of the introduction of new technologies and materials in the chemical, pharmaceutical, food, and agricultural sectors, as well as updated data on the toxicity of certain compounds, there is a growing need to regularly update information on potential food contaminants, methods for their detection, and strategies for reducing contamination levels.

Purpose: To provide an updated overview of chemical contamination in food products, covering key stages of its formation (raw materials, production, packaging, storage), modern methods of contaminant detection, and approaches to reducing their presence.

Materials and Methods: The literature search was conducted in the Scopus, ScienceDirect, PubMed, and RSCI databases, covering sources published between 2011 and 2024. The following descriptors were used: chemical contamination, chemical risk/hazards, food raw materials, ready-to-eat products/dishes, processed food. Source selection followed the PRISMA-ScR protocol, using Mendeley as a reference manager. Microsoft Excel was used for bibliographic mapping and data visualization. Additional information was drawn from the Russian national veterinary information system Vetis (component “Vesta”) and official reports from relevant regulatory agencies in Russia and abroad (including Rospotrebnadzor and ANSES).

Results: Against the backdrop of rapid technological advancement, the range of chemical contaminants has expanded significantly, particularly due to the inclusion of micro- and nanoplastics as well as transformation products of pharmaceutical substances and pesticides. Analysis of antibiotic residues in livestock raw materials and processed products (2020–2024) indicates frequent detection of fluoroquinolones, tetracyclines, penicillins, amphenicols, and sulfonamides. A promising direction involves the use of natural bioactive compounds that not only help reduce contamination (especially from polycyclic aromatic hydrocarbons (PAHs) and nitrosamines) but also serve as alternatives to synthetic food additives. The need for highly sensitive and reliable analytical methods capable of detecting both long-established and emerging contaminants has been clearly identified.

Conclusion: The results of this scoping review may be applied in the planning and implementation of governmental and industrial food safety monitoring programs, as well as in the development of improved chemical safety control measures for food production facilities.

About the Authors

Olga I. Lavrukhina
The Russian State Center for Animal Feed and Drug Standardization and Quality
Russian Federation

Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



Dmitry A. Makarov
The Russian State Center for Animal Feed and Drug Standardization and Quality
Russian Federation

Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



Elizaveta S. Kozeicheva
The Russian State Center for Animal Feed and Drug Standardization and Quality
Russian Federation

Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



Tatiana V. Balagula
Federal Service for Veterinary and Phytosanitary Surveillance
Russian Federation

Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



Alexey V. Tretyakov
The Russian State Center for Animal Feed and Drug Standardization and Quality
Russian Federation

Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



Maria A. Gergel
The Russian State Center for Animal Feed and Drug Standardization and Quality
Russian Federation

Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



Evgeniya A. Lozovaya
The Russian State Center for Animal Feed and Drug Standardization and Quality
Russian Federation

Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



References

1. Amelin, V. G., Shogah, Z. A. Ch., & Bolshakov, D. S. (2023). Identification and authentication of cow’s milk powder using a smartphone and chemometric analysis. Vestnik Moskovskogo universiteta. Seriya 2. Chemistry, 64(No1), 49–59. https://doi.org/10.55959/MSU0579-9384-2-2023-64-1-49-59 (In Russ.)

2. Amelin, V. G., Shogah, Z. A. Ch., Bolshakov, D. S., & Tretyakov, A. V. (2023). Identification and autentification of vegetable oils by digital colorymetry and chemometric analysis. Industrial Laboratory. Diagnostics of Materials, 89(2(I)), 5–12. https://doi.org/10.26896/1028-6861-2023-89-2-I-5-12 (In Russ.)

3. Amelin, V. G., Shogah, Z. A. Ch., Bolshakov, D. S., Tretyakov, A. V., Nesterenko, I. S., & Kish, L. K. (2023). Determination of seafood spoilage by digital colorimetry of indicator test systems. Industrial laboratory. Diagnostics of materials, 89(9), 25–33. https://doi.org/10.26896/1028-6861-2023-89-9-25-33 (In Russ.)

4. Balagula, T. V., Lavrukhina, O. I., Batov, I. V., Makarov, D. A., & Tretyakov, A. V. (2023). Antibiotics in veterinary medicine: contamination of livestock production. International Journal of Veterinary Medicine, 4, 174–179. https://doi.org/10.52419/issn2072-2419.2022.4.174 (In Russ.)

5. Grachev, S. A., Tretyakov, A. V., & Amelin, V. G. (2023). Optimization of sample preparation conditions in the determination of total arsenic in fish and seafoods by atomic absorption spectrometry with electrothermal atomization. Industrial Laboratory. Diagnostics of Materials, 89(1), 5–10. https://doi.org/10.26896/1028-6861-2023-89-1-5-10 (In Russ.)

6. Zaytseva, N. V, Ulanova, T. S., Karnazhitskaya, T. D., Zorina, A. S., & Permyakova, T. S. (2018). Determination of phthalates in juice product by high-performance liquid chromatography/mass spectrometry. Voprosy Pitaniia, 87(6), 117–124. https://doi.org/10.24411/0042-8833-2018-10073 (In Russ.)

7. Kalnitskaya, O. I. (2008). Veterinary and sanitary control of residual amounts of antibiotics in raw materials and animal products [Doctoral dissertation, Moscow State University of Applied Biotechnology]. The RGB electronic library. https://viewer.rsl.ru/ru/rsl01004244004 (In Russ.)

8. Kish, L. K., Tretyakov, A. V., Lavrukhina, O. I., Amelin, V. G., Gergel, M. A., & Mishchenko, N. V. (2022). Transformation products of pesticides and veterinary drugs in food and raw materials (analytical review). Theoretical and Applied Ecology, 2, 15–25. https://doi.org/10.25750/1995-4301-2022-2-015-025 (In Russ.)

9. Lavrukhina, O. I., Amelin, V. G., Prokhvatilova, L. B., & Ruchnova, O. I. (2017). Food product contamination risks at different stages of production. Veterinary Science Today, 22(3), 33–39. (In Russ.)

10. Makarov, D. A., Kozeicheva, E. S., & Shishov, A. S. (2023). Antibiotic contamination of plant products. Production Quality Control, 6, 36-41.

11. Morev, A. A., & Vinogradova, O. V. (2019). Determination of macro- and microelements in dairy, meat, and fish food products using microwave plasma – atomic emission spectroscopy. Industrial Laboratory. Diagnostics of Materials, 85(3), 14–19. https://doi.org/10.26896/1028-6861-2019-85-3-14-19 (In Russ.)

12. Chernova, A.V., & Petrochenkova, A.V. (2023). Regulation of the content of the contaminant acrylamide in food products. Scientific Journal of the Far Eastern State Technical Fisheries University, 63(1), 20–27. (in Russ.)

13. Abraham, A., & Rambla-Alegre, M. (2017). Marine toxins analysis for consumer protection. Comprehensive Analytical Chemistry, 78, 343–378. https://doi.org/10.1016/bs.coac.2017.07.004

14. Adebo, O. A., Kayitesi, E., Adebiyi, J. A., Gbashi, S., Temba, M. C., Lasekan, A., Phoku, J. Z., & Njobeh, P. B. (2017). Mitigation of acrylamide in foods: An African perspective. In B. S. R. Reddy (Ed.), Acrylic polymers in healthcare. InTech. https://doi.org/10.5772/intechopen.68982

15. Alamri, M. S., Qasem, A. A. A., Mohamed, A. A., Hussain, S., Ibraheem, M. A., Shamlan, G., Alqah, H. A., & Qasha, A. S. (2021). Food packaging’s materials: A food safety perspective. Saudi Journal of Biological Sciences, 28(8), 4490–4499. https://doi.org/10.1016/j.sjbs.2021.04.047

16. Albaseer, S. S. (2019). Factors controlling the fate of pyrethroids residues during post-harvest processing of raw agricultural crops: An overview. In Food Chemistry (Vol. 295, pp. 58–63). Elsevier Ltd. https://doi.org/10.1016/j.foodchem.2019.05.109

17. Amelin, V. G., Emelyanov, O. E., Tretyakov, A. V., & Kish, L. K. (2024). Identification and detection of adulterated butter by colorimetry and Near-IR-Spectroscopy. Journal of Applied Spectroscopy, 91(4), 826–834. https://doi.org/10.1007/s10812-024-01790-0

18. Amelin, V. G., Korotkov, A. G., & Andoralov, A. M. (2016). Identification and determination of 492 contaminants of different classes in food and feed by high-resolution mass spectrometry using the standard addition method. Journal of AOAC INTERNATIONAL, 99(6), 1600–1618. https://doi.org/10.5740/jaoacint.16-0069

19. Amelin, V. G., Shogah, Z. A. Ch., & Tretyakov, A. V. (2024). Analyzing dairy products: Measuring milk fat mass fraction and detecting adulteration using the PhotoMetrix Pro® Smartphone App. Journal of Analytical Chemistry, 79(1), 50–56. https://doi.org/10.1134/S1061934824010039

20. Amyot, M., Husser, E., St-Fort, K., & Ponton, D. E. (2023). Effect of cooking temperature on metal concentrations and speciation in fish muscle and seal liver. Ecotoxicology and Environmental Safety, 262. https://doi.org/10.1016/j.ecoenv.2023.115184

21. Artiaga, G., Ramos, K., Ramos, L., Cámara, C., & Gómez-Gómez, M. (2015). Migration and characterisation of nanosilver from food containers by AF4-ICP-MS. Food Chemistry, 166, 76–85. https://doi.org/10.1016/j.foodchem.2014.05.139

22. Baesu, A., & Bayen, S. (2022). Application of nontarget analysis and high-resolution mass spectrometry for the identification of thermal transformation products of oxytetracycline in Pacific White shrimp. Journal of Food Protection, 85(10), 1469–1478. https://doi.org/10.4315/JFP-22-128

23. Bai, M., Tang, R., Li, G., She, W., Chen, G., Shen, H., Zhu, S., Zhang, H., & Wu, H. (2022). High-throughput screening of 756 chemical contaminants in aquaculture products using liquid chromatography/quadrupole time-of-flight mass spectrometry. Food Chemistry: X, 15, 100380. https://doi.org/10.1016/j.fochx.2022.100380

24. Bianco, M., Calvano, C. D., Ventura, G., Losito, I., & Cataldi, T. R. I. (2022). Determination of hidden milk allergens in meat-based foodstuffs by liquid chromatography coupled to electrospray ionization and high-resolution tandem mass spectrometry. Food Control, 131. https://doi.org/10.1016/j.foodcont.2021.108443

25. Bolshakov, D. S., & Amelin, V. G. (2023). Capillary electrophoresis in assessing the quality and safety of foods. Journal of Analytical Chemistry, 78(7), 815–855. https://doi.org/10.1134/S106193482307002X

26. Brown, K., Blake, R. S., & Dennany, L. (2022). Electrochemiluminescence within veterinary Science: A review. Bioelectrochemistry, 146. https://doi.org/10.1016/j.bioelechem.2022.108156

27. Buculei, A., Amariei, S., Oroian, M., Gutt, G., Gaceu, L., & Birca, A. (2014). Metals migration between product and metallic package in canned meat. LWT - Food Science and Technology, 58(2), 364–374. https://doi.org/10.1016/j.lwt.2013.06.003

28. Bumbudsanpharoke, N., & Ko, S. (2015). Nano-food packaging: An overview of market, migration research, and safety regulations. Journal of Food Science, 80(5), R910–R923. https://doi.org/10.1111/1750-3841.12861

29. Cao, H., Wang, Z., Meng, J., Du, M., Pan, Y., Zhao, Y., & Liu, H. (2022). Determination of arsenic in Chinese mitten crabs (Eriocheir sinensis): Effects of cooking and gastrointestinal digestion on food safety. Food Chemistry, 393, 133345. https://doi.org/10.1016/j.foodchem.2022.133345

30. Capita, R., & Alonso-Calleja, C. (2013). Antibiotic-Resistant Bacteria: A Challenge for the Food Industry. Critical Reviews in Food Science and Nutrition, 53(1), 11–48. https://doi.org/10.1080/10408398.2010.519837

31. Carballo, D., Moltó, J. C., Berrada, H., & Ferrer, E. (2018). Presence of mycotoxins in ready-to-eat food and subsequent risk assessment. Food and Chemical Toxicology, 121, 558–565. https://doi.org/10.1016/j.fct.2018.09.054

32. CEF. (2015). Scientific оpinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA Journal, 13(1), 3978. https://doi.org/10.2903/j.efsa.2015.3978

33. Cheyns, K., Waegeneers, N., Van de Wiele, T., & Ruttens, A. (2017). Arsenic release from foodstuffs upon food preparation. Journal of Agricultural and Food Chemistry, 65(11), 2443–2453. https://doi.org/10.1021/acs.jafc.6b05721

34. Constantinou, M., Louca-Christodoulou, D., & Agapiou, A. (2021). Method validation for the determination of 314 pesticide residues using tandem MS systems (GC–MS/MS and LC-MS/MS) in raisins: Focus on risk exposure assessment and respective processing factors in real samples (a pilot survey). Food Chemistry, 360. https://doi.org/10.1016/j.foodchem.2021.129964

35. CONTAM. (2016a). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA Journal, 14(6). https://doi.org/10.2903/j.efsa.2016.4501

36. CONTAM. (2016b). Risks for human health related to the presence of 3‐ and 2‐monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA Journal, 14(5), 4426. https://doi.org/10.2903/j.efsa.2016.4426

37. Crews, C., Chiodini, A., Granvogl, M., Hamlet, C., Hrnčiřík, K., Kuhlmann, J., Lampen, A., Scholz, G., Weisshaar, R., Wenzl, T., Jasti, P. R., & Seefelder, W. (2013). Analytical approaches for MCPD esters and glycidyl esters in food and biological samples: a review and future perspectives. Food Additives & Contaminants: Part A, 30(1), 11–45. https://doi.org/10.1080/19440049.2012.720385

38. Cuadrado, C., Sanchiz, A., Arribas, C., Pedrosa, M. M., Gamboa, P., Betancor, D., Blanco, C., Cabanillas, B., & Linacero, R. (2023). Mitigation of peanut allergenic reactivity by combined processing: Pressured heating and enzymatic hydrolysis. Innovative Food Science and Emerging Technologies, 86. https://doi.org/10.1016/j.ifset.2023.103383

39. Cunningham, B. E., Sharpe, E. E., Brander, S. M., Landis, W. G., & Harper, S. L. (2023). Critical gaps in nanoplastics research and their connection to risk assessment. Frontiers in Toxicology, 5, 1154538. https://doi.org/10.3389/ftox.2023.1154538

40. Custodio-Mendoza, J. A., Sendón, R., de Quirós, A. R.-B., Lorenzo, R. A., & Carro, A. M. (2023). Development of a QuEChERS method for simultaneous analysis of 3-Monochloropropane-1,2-diol monoesters and Glycidyl esters in edible oils and margarine by LC-APCI-MS/MS. Analytica Chimica Acta, 1239, 340712. https://doi.org/10.1016/j.aca.2022.340712

41. Darwish, W. S., Chiba, H., El-Ghareeb, W. R., Elhelaly, A. E., & Hui, S. P. (2019). Determination of polycyclic aromatic hydrocarbon content in heat-treated meat retailed in Egypt: Health risk assessment, benzo[a]pyrene induced mutagenicity and oxidative stress in human colon (CaCo-2) cells and protection using rosmarinic and ascorbic acids. Food Chemistry, 290, 114–124. https://doi.org/10.1016/j.foodchem.2019.03.127

42. Deng, S., Bai, X., Li, Y., Wang, B., Kong, B., Liu, Q., & Xia, X. (2021). Changes in moisture, colour, residual nitrites and N-nitrosamine accumulation of bacon induced by nitrite levels and dry-frying temperatures. Meat Science, 181, 108604. https://doi.org/10.1016/j.meatsci.2021.108604

43. Di Bella, G., Potortì, A. G., Lo Turco, V., Saitta, M., & Dugo, G. (2014). Plasticizer residues by HRGC–MS in espresso coffees from capsules, pods and moka pots. Food Control, 41, 185–192. https://doi.org/10.1016/j.foodcont.2014.01.026

44. Dias, C., Costa, J., Mafra, I., Fernandes, D., Brandão, A. T. S. C., Silva, A. F., Pereira, C. M., & Costa, R. (2024). Electrochemical immunosensor for point-of-care detection of soybean Gly m TI allergen in foods. Talanta, 268, 125284. https://doi.org/10.1016/j.talanta.2023.125284

45. Ding, T., & Li, Y. (2024). Biogenic amines are important indices for characterizing the freshness and hygienic quality of aquatic products: A review. In LWT (Vol. 194, p. 115793). Academic Press. https://doi.org/10.1016/j.lwt.2024.115793

46. Djordjevic, T., & Djurovic-Pejcev, R. (2016). Food processing as a means for pesticide residue dissipation. Pesticidi i Fitomedicina, 31(3–4), 89–105. https://doi.org/10.2298/pif1604089d

47. Dong, X., & Raghavan, V. (2022). Recent advances of selected novel processing techniques on shrimp allergenicity: A review. Trends in Food Science & Technology, 124, 334–344. https://doi.org/10.1016/j.tifs.2022.04.024

48. Drewnowska, M., Sąpór, A., Jarzyńska, G., Nnorom, I. C., Sajwan, K. S., & Falandysz, J. (2012). Mercury in Russula mushrooms: Bioconcentration by Yellow-ocher Brittle Gills Russula ochroleuca. Journal of Environmental Science and Health, Part A, 47(11), 1577–1591. https://doi.org/10.1080/10934529.2012.680420

49. Duedahl-Olesen, L., Wilde, A. S., Dagnæs-Hansen, M. P., Mikkelsen, A., Olesen, P. T., & Granby, K. (2022a). Acrylamide in commercial table olives and the effect of domestic cooking. Food Control, 132, 108515. https://doi.org/10.1016/j.foodcont.2021.108515

50. Duedahl-Olesen, L., Wilde, A. S., Dagnæs-Hansen, M. P., Mikkelsen, A., Olesen, P. T., & Granby, K. (2022b). Acrylamide in commercial table olives and the effect of domestic cooking. Food Control, 132, 108515. https://doi.org/10.1016/j.foodcont.2021.108515

51. Dykes, G. A., Coorey, R., Ravensdale, J. T., & Sarjit, A. (2019). Phosphates. In L. Melton, F. Shahidi, & P. Varelis (Eds.), Encyclopedia of food chemistry (pp. 218–224). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21583-7

52. Edna Hee, P. T., Liang, Z., Zhang, P., & Fang, Z. (2024). Formation mechanisms, detection methods and mitigation strategies of acrylamide, polycyclic aromatic hydrocarbons and heterocyclic amines in food products. Food Control, 158, 110236. https://doi.org/10.1016/j.foodcont.2023.110236

53. El Qacemi, M., Rendine, S., & Maienfisch, P. (2018). Recent applications of fluorine in crop protection-new discoveries originating from the unique heptafluoroisopropyl group. In G. Haufe & F. R. Leroux (Eds.), Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals Progress in Fluorine Science Series (pp. 607–629). Elsevier. https://doi.org/10.1016/B978-0-12-812733-9.00017-9

54. El-Saber Batiha, G., Hussein, D. E., Algammal, A. M., George, T. T., Jeandet, P., Al-Snafi, A. E., Tiwari, A., Pagnossa, J. P., Lima, C. M., Thorat, N. D., Zahoor, M., El-Esawi, M., Dey, A., Alghamdi, S., Hetta, H. F., & Cruz-Martins, N. (2021). Application of natural antimicrobials in food preservation: Recent views. Food Control, 126, 108066. https://doi.org/10.1016/j.foodcont.2021.108066

55. Eymar, E., Garcia-Delgado, C., & Esteban, R. M. (2016). Food Poisoning: Classification. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 56–66). Academic Press. https://doi.org/10.1016/B978-0-12-384947-2.00317-2

56. Fan, M., Xu, X., Lang, W., Wang, W., Wang, X., Xin, A., Zhou, F., Ding, Z., Ye, X., & Zhu, B. (2023). Toxicity, formation, contamination, determination and mitigation of acrylamide in thermally processed plant-based foods and herbal medicines: A review. Ecotoxicology and Environmental Safety, 260. https://doi.org/10.1016/j.ecoenv.2023.115059

57. FAO. (2017). Food safety risk management. Evidence-informed policies and decisions, considering multiple factors. In 4 - Food safety and quality series. FAO. http://www.fao.org/3/i8240en/I8240EN.pdf

58. FAO/WHO. (1989). Evaluation of certain veterinary drug residues in food. Thirty-fourth Report of the Joint FAO/WHO Expert Committee on Food Additives.

59. FAO/WHO. (2013). Public health risks of histamine and other biogenic amines from fish and fishery products. https://www.fao.org/fileadmin/user_upload/agns/pdf/Histamine/Histamine_AdHocfinal.pdf

60. FAO/WHO. (2024). Report 2023: Pesticide residues in food – Joint FAO/WHO meeting on pesticide residues. https://doi.org/10.4060/cc9755en

61. Fong, F. L. Y., El-Nezami, H., & Sze, E. T. P. (2021). Biogenic amines – Precursors of carcinogens in traditional Chinese fermented food. NFS Journal, 23, 52–57. https://doi.org/10.1016/j.nfs.2021.04.002

62. Fujii, Y., Harada, K. H., Nakamura, T., Kato, Y., Ohta, C., Koga, N., Kimura, O., Endo, T., Koizumi, A., & Haraguchi, K. (2020). Perfluorinated carboxylic acids in edible clams: A possible exposure source of perfluorooctanoic acid for Japanese population. Environmental Pollution, 263, 114369. https://doi.org/10.1016/j.envpol.2020.114369

63. Gajda, A., Bladek, T., Gbylik-Sikorska, M., & Posyniak, A. (2017). The influence of cooking procedures on doxycycline concentration in contaminated eggs. Food Chemistry, 221, 1666–1670. https://doi.org/10.1016/j.foodchem.2016.10.121

64. Gallardo-Ramos, J. A., Marín-Sáez, J., Sanchis, V., Gámiz-Gracia, L., García-Campaña, A. M., Hernández-Mesa, M., & Cano-Sancho, G. (2024). Simultaneous detection of mycotoxins and pesticides in human urine samples: A 24-h diet intervention study comparing conventional and organic diets in Spain. Food and Chemical Toxicology, 188, 114650. https://doi.org/10.1016/j.fct.2024.114650

65. Ganjeh, A. M., Moreira, N., Pinto, C. A., Casal, S., & Saraiva, J. A. (2024). The effects of high-pressure processing on biogenic amines in food: A review. Food and Humanity, 2, 100252. https://doi.org/10.1016/j.foohum.2024.100252

66. Ghahremani, M.-H., Ghazi-Khansari, M., Farsi, Z., Yazdanfar, N., Jahanbakhsh, M., & Sadighara, P. (2024). Bisphenol A in dairy products, amount, potential risks, and the various analytical methods, a systematic review. Food Chemistry: X, 21, 101142. https://doi.org/10.1016/j.fochx.2024.101142

67. Gmoshinski, I. V., Shipelin, V. A., Kolobanov, A. I., Sokolov, I. E., Maisaya, K. Z., & Khotimchenko, S. A. (2023). Methods for the identification and quantification of microplastics in foods (a review). Problems of Nutrition, 92(5), 87–102. https://doi.org/10.33029/0042-8833-2023-92-5-87-102

68. Goh, K. M., Wong, Y. H., Tan, C. P., & Nyam, K. L. (2021). A summary of 2-, 3-MCPD esters and glycidyl ester occurrence during frying and baking processes. Current Research in Food Science, 4, 460–469. https://doi.org/10.1016/j.crfs.2021.07.002

69. Gorecki, S., Bemrah, N., Roudot, A.-C., Marchioni, E., Le Bizec, B., Faivre, F., Kadawathagedara, M., Botton, J., & Rivière, G. (2017). Human health risks related to the consumption of foodstuffs of animal origin contaminated by bisphenol A. Food and Chemical Toxicology, 110, 333–339. https://doi.org/10.1016/j.fct.2017.10.045

70. Grusie, T., Cowan, V., Singh, J., McKinnon, J., & Blakley, B. (2018). Proportions of predominant Ergot alkaloids (Claviceps purpurea) detected in Western Canadian grains from 2014 to 2016. World Mycotoxin Journal, 11(2), 259–264. https://doi.org/10.3920/WMJ2017.2241

71. Haque, M. A., Wang, Y., Shen, Z., Li, X., Saleemi, M. K., & He, C. (2020). Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microbial Pathogenesis, 142, 104095. https://doi.org/10.1016/j.micpath.2020.104095

72. Hassoun, A., Pasti, L., Chenet, T., Rusanova, P., Smaoui, S., Aït-Kaddour, A., & Bono, G. (2023). Detection methods of micro and nanoplastics. In F. Özogul (Ed.), Advances in food and nutrition research (Vol. 103, pp. 175–227). Academic Press. https://doi.org/10.1016/bs.afnr.2022.08.002

73. Heo, D.-G., Lee, D.-C., Kwon, Y.-M., Seol, M.-J., Moon, J. S., Chung, S. M., & Kim, J.-H. (2022). Simultaneous determination of perfluorooctanoic acid and perfluorooctanesulfonic acid in Korean sera using LC-MS/MS. Journal of Chromatography B, 1192, 123138. https://doi.org/10.1016/j.jchromb.2022.123138

74. Hernandez-Ledesma, B., & Herrero, M. (Eds.). (2013). Bioactive Compounds from Marine Foods: Plant and Animal Sources. Wiley-Blackwell.

75. Huang, J. Y., Li, X., & Zhou, W. (2015). Safety assessment of nanocomposite for food packaging application. Trends in Food Science & Technology, 45(2), 187–199. https://doi.org/10.1016/j.tifs.2015.07.002

76. Huang, M., & Penning, T. M. (2014). Processing Contaminants: Polycyclic Aromatic Hydrocarbons (PAHs). In Y. Motarjemi (Ed.), Encyclopedia of food safety (Vol. 2, pp. 416–423). Academic Press. https://doi.org/10.1016/B978-0-12-378612-8.00212-2

77. Huang, Z., Qu, Y., Hua, X., Wang, F., Jia, X., & Yin, L. (2023). Recent advances in soybean protein processing technologies: A review of preparation, alterations in the conformational and functional properties. International Journal of Biological Macromolecules, 248, 125862. https://doi.org/10.1016/j.ijbiomac.2023.125862

78. Iqbal, S. Z., Rabbani, T., Asi, M. R., & Jinap, S. (2014). Assessment of aflatoxins, ochratoxin A and zearalenone in breakfast cereals. Food Chemistry, 157, 257–262. https://doi.org/10.1016/j.foodchem.2014.01.129

79. Izzo, L., Narváez, A., Castaldo, L., Gaspari, A., Rodríguez-Carrasco, Y., Grosso, M., & Ritieni, A. (2022). Multiclass and multi-residue screening of mycotoxins, pharmacologically active substances, and pesticides in infant milk formulas through ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry analysis. Journal of Dairy Science, 105(4), 2948–2962. https://doi.org/10.3168/jds.2021-21123

80. Izzo, L., Rodríguez-Carrasco, Y., Tolosa, J., Graziani, G., Gaspari, A., & Ritieni, A. (2020). Target analysis and retrospective screening of mycotoxins and pharmacologically active substances in milk using an ultra-high-performance liquid chromatography/high-resolution mass spectrometry approach. Journal of Dairy Science, 103(2), 1250–1260. https://doi.org/10.3168/jds.2019-17277

81. Jia, Q., Liao, G., Chen, L., Qian, Y., Yan, X., & Qiu, J. (2024). Pesticide residues in animal-derived food: Current state and perspectives. Food Chemistry, 438, 137974. https://doi.org/10.1016/j.foodchem.2023.137974

82. Jooste, P. J., Anelich, L., & Motarjemi, Y. (2014). Safety of food and beverages: Milk and dairy products. In Y. Motarjemi (Ed.), Encyclopedia of food safety (Vol. 3, pp. 285–296). Academic Press. https://doi.org/10.1016/B978-0-12-378612-8.00286-9

83. Kobun, R. (Ed.). (2021). Biosensor technology to detect chemical contamination in food. In Advanced food fnalysis tools (pp. 127–146). Academic Press. https://doi.org/10.1016/B978-0-12-820591-4.00007-4

84. Kohli, G. S., Papiol, G. G., Rhodes, L. L., Harwood, D. T., Selwood, A., Jerrett, A., Murray, S. A., & Neilan, B. A. (2014). A feeding study to probe the uptake of Maitotoxin by snapper (Pagrus auratus). Harmful Algae, 37, 125–132. https://doi.org/10.1016/j.hal.2014.05.018

85. Kovalchuk, Y., Podurets, A., Osmolovskaya, O., Nugbienyo, L., & Bulatov, A. (2024). Layered double hydroxide nanoparticles for a smartphone digital image colorimetry-based determination of fluoride ions in water, milk and dental products. Food Chemistry, 438, 137999. https://doi.org/10.1016/j.foodchem.2023.137999

86. Kumar, N., Singh, A., Sharma, D. K., & Kishore, K. (2019). Toxicity of food additives. In R. L. Singh & S. Mondal (Eds.), Food safety and human health (pp. 67–98). Academic Press. https://doi.org/10.1016/B978-0-12-816333-7.00003-5

87. Kuswandi, B., Futra, D., & Heng, L. Y. (2017). Nanosensors for the Detection of Food Contaminants. In A. E. Oprea & A. M. Grumezescu (Eds.), Nanotechnology applications in food: Flavor, stability, nutrition and safety (pp. 307–333). Academic Press. https://doi.org/10.1016/B978-0-12-811942-6.00015-7

88. Lambré, C., Barat Baviera, J. M., Bolognesi, C., Chesson, A., Cocconcelli, P. S., Crebelli, R., Gott, D. M., Grob, K., Lampi, E., Mengelers, M., Mortensen, A., Rivière, G., Silano (until December †), V., Steffensen, I., Tlustos, C., Vernis, L., Zorn, H., Batke, M., Bignami, M., … Van Loveren, H. (2023). Re‐evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA Journal, 21(4), 6857. https://doi.org/10.2903/j.efsa.2023.6857

89. Leal, J. F., & Cristiano, M. L. S. (2022). Marine paralytic shellfish toxins: Chemical properties, mode of action, newer analogues, and structure-toxicity relationship. Natural Product Reports, 39(1), 33–57. https://doi.org/10.1039/d1np00009h

90. Lee, J.-G., Kim, S.-Y., Moon, J.-S., Kim, S.-H., Kang, D.-H., & Yoon, H.-J. (2016). Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chemistry, 199, 632–638. https://doi.org/10.1016/j.foodchem.2015.12.017

91. Leigh, J., & MacMahon, S. (2017). Occurrence of 3-monochloropropanediol esters and glycidyl esters in commercial infant formulas in the United States. Food Additives & Contaminants: Part A, 34(3), 356–370. https://doi.org/10.1080/19440049.2016.1276304

92. Li, J., Chen, S., Li, H., Liu, X., Cheng, J., & Ma, L. Q. (2021). Arsenic bioaccessibility in rice grains via modified physiologically-based extraction test (MPBET): Correlation with mineral elements and comparison with As relative bioavailability. Environmental Research, 198, 111198. https://doi.org/10.1016/j.envres.2021.111198

93. Li, T., Li, J., Wang, J., Xue, K. S., Su, X., Qu, H., Duan, X., & Jiang, Y. (2024). The occurrence and management of fumonisin contamination across the food production and supply chains. Journal of Advanced Research, 60, 13–26. https://doi.org/10.1016/j.jare.2023.08.001

94. Lin, Q.-B., Li, H., Zhong, H.-N., Zhao, Q., Xiao, D.-H., & Wang, Z.-W. (2014). Migration of Ti from nano-TiO2-polyethylene composite packaging into food simulants. Food Additives & Contaminants: Part A, 1–7. https://doi.org/10.1080/19440049.2014.907505

95. Ling, M.-P., Wu, C.-H., Chen, S.-C., Chen, W.-Y., Chio, C.-P., Cheng, Y.-H., & Liao, C.-M. (2014). Probabilistic framework for assessing the arsenic exposure risk from cooked fish consumption. Environmental Geochemistry and Health, 36(6), 1115–1128. https://doi.org/10.1007/s10653-014-9621-8

96. List of highly hazardous pesticides. (2024, December). Pesticide Action Network International. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf

97. Liu, Y., Huang, Y., Li, L., Xiong, Y., Tong, L., Wang, F., Fan, B., & Gong, J. (2023). Effect of different agricultural conditions, practices, and processing on levels of total arsenic and species in cereals and vegetables: A review. Food Control, 152, 109876. https://doi.org/10.1016/j.foodcont.2023.109876

98. Lo Turco, V., Di Bella, G., Potortì, A. G., Fede, M. R., & Dugo, G. (2015). Determination of plasticizer residues in tea by solid phase extraction–gas chromatography–mass spectrometry. European Food Research and Technology, 240(2), 451–458. https://doi.org/10.1007/s00217-014-2344-3

99. Luo, Q., Liu, Z., Yin, H., Dang, Z., Wu, P., Zhu, N., Lin, Z., & Liu, Y. (2018). Migration and potential risk of trace phthalates in bottled water: A global situation. Water Research, 147, 362–372. https://doi.org/10.1016/j.watres.2018.10.002

100. Mahato, D. K., Kamle, M., Sharma, B., Pandhi, S., Devi, S., Dhawan, K., Selvakumar, R., Mishra, D., Kumar, A., Arora, S., Singh, N. A., & Kumar, P. (2021). Patulin in food: A mycotoxin concern for human health and its management strategies. Toxicon, 198, 12–23. https://doi.org/10.1016/j.toxicon.2021.04.027

101. Manav, Ö. G., Dinç-Zor, Ş., & Alpdoğan, G. (2019). Optimization of a modified QuEChERS method by means of experimental design for multiresidue determination of pesticides in milk and dairy products by GC–MS. Microchemical Journal, 144, 124–129. https://doi.org/10.1016/j.microc.2018.08.056

102. Manimekalai, M., Rawson, A., Sengar, A. S., & Kumar, K. S. (2019). Development, optimization, and validation of methods for quantification of veterinary drug residues in complex food matrices using liquid-chromatography – A review. Food Analytical Methods, 12(8), 1823–1837. https://doi.org/10.1007/s12161-019-01512-9

103. Martín-Gómez, B., Stephen Elmore, J., Valverde, S., Ares, A. M., & Bernal, J. (2024). Recent applications of chromatography for determining microplastics and related compounds (bisphenols and phthalate esters) in food. Microchemical Journal, 197, 109903. https://doi.org/10.1016/j.microc.2024.109903

104. Mihindukulasuriya, S. D. F., & Lim, L. T. (2014). Nanotechnology development in food packaging: A review. Trends in Food Science and Technology, 40(2), 149–167. https://doi.org/10.1016/j.tifs.2014.09.009

105. Molina-Garcia, L., Santos, C. S. P., Melo, A., Fernandes, J. O., Cunha, S. C., & Casal, S. (2015). Acrylamide in chips and french fries: A novel and simple method using xanthydrol for its GC-MS determination. Food Analytical Methods, 8(6), 1436–1445. https://doi.org/10.1007/s12161-014-0014-5

106. Morya, S., Amoah, A. E. D. D., & Snaebjornsson, S. O. (2020). Food poisoning hazards and their consequences over food safety. In P. Chowdhary, A. Raj, D. Verma, & Y. Akhter (Eds.), Microorganisms for sustainable environment and health (pp. 383–400). Elsevier. https://doi.org/10.1016/B978-0-12-819001-2.00019-X

107. Muaz, K., Riaz, M., Akhtar, S., Park, S., & Ismail, A. (2018). Antibiotic residues in chicken meat: Global prevalence, threats, and decontamination strategies: A review. Journal of Food Protection, 81(4), 619–627. https://doi.org/10.4315/0362-028X.JFP-17-086

108. Mühlemann, M. (2014). Safety of food and beverages: Dairy products: Cheese. In Y. Motarjemi (Ed.), Encyclopedia of Food Safety (Vol. 3, pp. 297–308). Academic Press. https://doi.org/10.1016/B978-0-12-378612-8.00415-7

109. Myrtsi, E. D., Koulocheri, S. D., & Haroutounian, S. A. (2023). Α novel method for the efficient simultaneous quantification of 67 phytoestrogens in plants and foodstuffs. Food Bioscience, 56, 103357. https://doi.org/10.1016/j.fbio.2023.103357

110. Nerín, C., Aznar, M., & Carrizo, D. (2016). Food contamination during food process. Trends in Food Science and Technology, 48, 63–68. https://doi.org/10.1016/j.tifs.2015.12.004

111. Ni, M., Li, X., Zhang, L., Kumar, V., & Chen, J. (2022). Bibliometric Analysis of the Toxicity of Bisphenol A. International Journal of Environmental Research and Public Health, 19(13), 7886. https://doi.org/10.3390/ijerph19137886

112. Nyman, P. J., Limm, W., Begley, T. H., & Chirtel, S. J. (2014). Single-Laboratory Validation of a Method for the Determination of Select Volatile Organic Compounds in Foods by Using Vacuum Distillation with Gas Chromatography/Mass Spectrometry. Journal of AOAC INTERNATIONAL, 97(2), 510–520. https://doi.org/10.5740/jaoacint.13-294

113. Özogul, F., & Hamed, I. (2018). Marine-Based Toxins and Their Health Risk. In I. M. Holban & A. M. Grumezescu (Eds.), Handbook of food bioengineering, Food quality: Balancing health and disease (Vol. 13, pp. 109–144). Academic Press. https://doi.org/10.1016/B978-0-12-811442-1.00003-1

114. Park, J., Yang, K.-A., Choi, Y., & Choe, J. K. (2022). Novel ssDNA aptamer-based fluorescence sensor for perfluorooctanoic acid detection in water. Environment International, 158, 107000. https://doi.org/10.1016/j.envint.2021.107000

115. Pasias, I. N., Raptopoulou, K. G., & Proestos, C. (2018). Migration from metal packaging into food. In Reference module in food science. Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.22528-6

116. Passos, C. P., Ferreira, S. S., Serôdio, A., Basil, E., Marková, L., Kukurová, K., Ciesarová, Z., & Coimbra, M. A. (2018). Pectic polysaccharides as an acrylamide mitigation strategy – Competition between reducing sugars and sugar acids. Food Hydrocolloids, 81, 113–119. https://doi.org/10.1016/j.foodhyd.2018.02.032

117. Perrone, G., Rodriguez, A., Magistà, D., & Magan, N. (2019). Insights into existing and future fungal and mycotoxin contamination of cured meats. Current Opinion in Food Science, 29, 20–27. https://doi.org/10.1016/j.cofs.2019.06.012

118. Perugini, M., Zezza, D., Tulini, S. M. R., Abete, M. C., Monaco, G., Conte, A., Olivieri, V., & Amorena, M. (2016). Effect of cooking on total mercury content in Norway lobster and European hake and public health impact. Marine Pollution Bulletin, 109(1), 521–525. https://doi.org/10.1016/j.marpolbul.2016.05.010

119. Peters, R. J. B., Rivera, Z. H., van Bemmel, G., Marvin, H. J. P., Weigel, S., & Bouwmeester, H. (2014). Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Analytical and Bioanalytical Chemistry. https://doi.org/10.1007/s00216-013-7571-0

120. Peters, R. J. B., van Bemmel, G., Herrera-Rivera, Z., Helsper, H. P. F. G., Marvin, H. J. P., Weigel, S., Tromp, P. C., Oomen, A. G., Rietveld, A. G., & Bouwmeester, H. (2014). Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles. Journal of Agricultural and Food Chemistry, 62(27), 6285–6293. https://doi.org/10.1021/jf5011885

121. Pilolli, R., Van Poucke, C., De Angelis, E., Nitride, C., de Loose, M., Gillard, N., Huet, A. C., Tranquet, O., Larré, C., Adel-Patient, K., Bernard, H., Mills, E. N. C., & Monaci, L. (2021). Discovery based high resolution MS/MS analysis for selection of allergen markers in chocolate and broth powder matrices. Food Chemistry, 343, 128533. https://doi.org/10.1016/j.foodchem.2020.128533

122. Planche, C., Ratel, J., Blinet, P., Mercier, F., Angénieux, M., Chafey, C., Zinck, J., Marchond, N., Chevolleau, S., Marchand, P., Dervilly-Pinel, G., Guérin, T., Debrauwer, L., & Engel, E. (2017). Effects of pan cooking on micropollutants in meat. Food Chemistry, 232, 395–404. https://doi.org/10.1016/j.foodchem.2017.03.049

123. Planque, M., Arnould, T., Dieu, M., Delahaut, P., Renard, P., & Gillard, N. (2016). Advances in ultra-high performance liquid chromatography coupled to tandem mass spectrometry for sensitive detection of several food allergens in complex and processed foodstuffs. Journal of Chromatography A, 1464, 115–123. https://doi.org/10.1016/j.chroma.2016.08.033

124. Poissant, R., Mariotti, F., Zalko, D., & Membré, J. M. (2023). Ranking food products based on estimating and combining their microbiological, chemical and nutritional risks: Method and application to Ready-To-Eat dishes sold in France. Food Research International, 169, 112939. https://doi.org/10.1016/j.foodres.2023.112939

125. Pudel, F., Benecke, P., Fehling, P., Freudenstein, A., Matthäus, B., & Schwaf, A. (2011). On the necessity of edible oil refining and possible sources of 3-MCPD and glycidyl esters. 113, 368–373.

126. Ramos, F., Santos, L., & Barbosa, J. (2017). Nitrofuran veterinary drug residues in chicken eggs. In P. Y. Hester (Ed.), Egg innovations and strategies for improvements (pp. 457–464). Academic Press. https://doi.org/10.1016/B978-0-12-800879-9.00043-3

127. Rana, M. S., Lee, S. Y., Kang, H. J., & Hur, S. J. (2019). Reducing veterinary drug residues in animal products: A review. Food Science of Animal Resources, 39(5), 687–703. https://doi.org/10.5851/kosfa.2019.e65

128. Rodriguez-Saona, L., Aykas, D. P., Borba, K. R., & Urtubia, A. (2020). Miniaturization of optical sensors and their potential for high-throughput screening of foods. Current Opinion in Food Science, 31, 136–150. https://doi.org/10.1016/j.cofs.2020.04.008

129. Saha Turna, N., Chung, R., & McIntyre, L. (2024). A review of biogenic amines in fermented foods: Occurrence and health effects. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24501

130. Sanchis, Y., Yusà, V., & Coscollà, C. (2017). Analytical strategies for organic food packaging contaminants. In Journal of Chromatography A (Vol. 1490, pp. 22–46). Elsevier B.V. https://doi.org/10.1016/j.chroma.2017.01.076

131. Santonicola, S., Ferrante, M. C., Di Leo, G., Murru, N., Anastasio, A., & Mercogliano, R. (2018). Study on endocrine disruptors levels in raw milk from cow’s farms: Risk assessment. Italian Journal of Food Safety, 7(3), 7668. https://doi.org/10.4081/ijfs.2018.7668

132. Schilberg, R. N., Wei, S., Twagirayezu, S., & Neill, J. L. (2021). Conformational dynamics of perfluorooctanoic acid (PFOA) studied by molecular rotational resonance (MRR) spectroscopy. Chemical Physics Letters, 778, 138789. https://doi.org/10.1016/j.cplett.2021.138789

133. Shruti, V. C., & Kutralam-Muniasamy, G. (2024). Migration testing of microplastics in plastic food-contact materials: Release, characterization, pollution level, and influencing factors. TrAC Trends in Analytical Chemistry, 170, 117421. https://doi.org/10.1016/j.trac.2023.117421

134. Sin, J. E. V., Shen, P., Teo, G. S., Neo, L. P., Huang, L., Chua, P., Tan, M. W., Wu, Y., Li, A., Er, J. C., & Chan, S. H. (2023). Surveillance of veterinary drug residues in food commonly consumed in Singapore and assessment of dietary exposure. Heliyon, 9(11), e21160. https://doi.org/10.1016/j.heliyon.2023.e21160

135. Singh, G., Stephan, C., Westerhoff, P., Carlander, D., & Duncan, T. V. (2014). Measurement Methods to Detect, Characterize, and Quantify Engineered Nanomaterials in Foods. Comprehensive Reviews in Food Science and Food Safety, 13(4), 693–704. https://doi.org/10.1111/1541-4337.12078

136. Singh, L., Agarwal, T., & Simal-Gandara, J. (2023). Summarizing minimization of polycyclic aromatic hydrocarbons in thermally processed foods by different strategies. Food Control, 146, 109514. https://doi.org/10.1016/j.foodcont.2022.109514

137. Singh, L., Varshney, J. G., & Agarwal, T. (2016). Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chemistry, 199, 768–781. https://doi.org/10.1016/j.foodchem.2015.12.074

138. Smith, D. J., & Kim, M. K. (2017). Chemical Contamination of Red Meat. In D. Schrenk & A. Cartus (Eds.), Chemical contaminants and residues in food (2nd ed., pp. 451–489). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100674-0.00018-7

139. Sohail, M., Urooj, Z., Noreen, S., Baig, M. M. F. A., Zhang, X., & Li, B. (2023). Micro- and nanoplastics: Contamination routes of food products and critical interpretation of detection strategies. Science of The Total Environment, 891, 164596. https://doi.org/10.1016/j.scitotenv.2023.164596

140. Soliño, L., & Costa, P. R. (2018). Differential toxin profiles of ciguatoxins in marine organisms: Chemistry, fate and global distribution. In Toxicon (Vol. 150, pp. 124–143). Elsevier Ltd. https://doi.org/10.1016/j.toxicon.2018.05.005

141. Song, X., Li, R., Li, H., Hu, Z., Mustapha, A., & Lin, M. (2014). Characterization and Quantification of Zinc Oxide and Titanium Dioxide Nanoparticles in Foods. Food and Bioprocess Technology, 7(2), 456–462. https://doi.org/10.1007/s11947-013-1071-2

142. Stadler, R. H. (2019). Introduction to the volume: Food adulteration & contamination. In L. Melton, F. Shahidi, & P. Varelis (Eds.), Encyclopedia of food chemistry (pp. 317–319). Academic Press. https://doi.org/10.1016/B978-0-08-100596-5.21783-6

143. Stadler, R. H., & Theurillat, V. (2017). Heat-Generated Toxicants in foods (acrylamide, MCPD esters, glycidyl esters, furan, and related compounds). In D. Schrenk & A. Cartus (Eds.), Chemical contaminants and residues in food (2nd ed., pp. 171–195). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100674-0.00008-4

144. Stegelmeier, B. L., Colegate, S. M., & Brown, A. W. (2016). Dehydropyrrolizidine alkaloid toxicity, cytotoxicity, and carcinogenicity. In Toxins (Vol. 8, Issue 12). MDPI AG. https://doi.org/10.3390/toxins8120356

145. Stella, R., Sette, G., Moressa, A., Gallina, A., Aloisi, A. M., Angeletti, R., & Biancotto, G. (2020). LC-HRMS/MS for the simultaneous determination of four allergens in fish and swine food products. Food Chemistry, 331. https://doi.org/10.1016/j.foodchem.2020.127276

146. Sun, X., Wang, R., Li, L., Wang, X., & Ji, W. (2021). Online extraction based on ionic covalent organic framework for sensitive determination of trace per- and polyfluorinated alkyl substances in seafoods by UHPLC-MS/MS. Food Chemistry, 362. https://doi.org/10.1016/j.foodchem.2021.130214

147. Thakali, A., & MacRae, J. D. (2021). A review of chemical and microbial contamination in food: What are the threats to a circular food system? In Environmental Research (Vol. 194). Academic Press Inc. https://doi.org/10.1016/j.envres.2020.110635

148. Thanushree, M. P., Sailendri, D., Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2019). Mycotoxin contamination in food: An exposition on spices. In Trends in Food Science and Technology (Vol. 93, pp. 69–80). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2019.08.010

149. Theurillat, X., Mujahid, C., Eriksen, B., Griffin, A., Savage, A., Delatour, T., & Mottier, P. (2023). An LC-MS/MS method for the quantitative determination of 57 per- and polyfluoroalkyl substances at ng/kg levels in different food matrices. Food Additives & Contaminants: Part A, 40(7), 862–877. https://doi.org/10.1080/19440049.2023.2226771

150. Thomsen, S. T., Assunção, R., Afonso, C., Boué, G., Cardoso, C., Cubadda, F., Garre, A., Kruisselbrink, J. W., Mantovani, A., Pitter, J. G., Poulsen, M., Verhagen, H., Ververis, E., Voet, H. van der, Watzl, B., & Pires, S. M. (2022). Human health risk–benefit assessment of fish and other seafood: a scoping review. In Critical Reviews in Food Science and Nutrition (Vol. 62, Issue 27, pp. 7479–7502). Taylor and Francis Ltd. https://doi.org/10.1080/10408398.2021.1915240

151. Tian, L., & Bayen, S. (2018). Thermal degradation of chloramphenicol in model solutions, spiked tissues and incurred samples. Food Chemistry, 248, 230–237. https://doi.org/10.1016/j.foodchem.2017.12.043

152. Tolosa, J., Rodríguez-Carrasco, Y., Ruiz, M. J., & Vila-Donat, P. (2021). Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: A review. In Food and Chemical Toxicology (Vol. 158). Elsevier Ltd. https://doi.org/10.1016/j.fct.2021.112661

153. Torre, R., Freitas, M., Costa‐Rama, E., Nouws, H. P. A., & Delerue‐Matos, C. (2022). Food allergen control: Tropomyosin analysis through electrochemical immunosensing. Food Chemistry, 396. https://doi.org/10.1016/j.foodchem.2022.133659

154. Ulanova, T. S., Karnazhitskaya, T. D., Zelenkin, S. E., & Zorina, A. S. (2021). Phthalate analysis in foods for young children using LC-MS method. Problems of Nutrition, 90(2), 128–137. https://doi.org/10.33029/0042-8833-2021-90-2-128-137

155. Upadhyay, M. K., Shukla, A., Yadav, P., & Srivastava, S. (2019). A review of arsenic in crops, vegetables, animals and food products. Food Chemistry, 276, 608–618. https://doi.org/10.1016/j.foodchem.2018.10.069

156. Van der Fels-Klerx, H. J., Van Asselt, E. D., Raley, M., Poulsen, M., Korsgaard, H., Bredsdorff, L., Nauta, M., D’agostino, M., Coles, D., Marvin, H. J. P., & Frewer, L. J. (2018). Critical review of methods for risk ranking of food-related hazards, based on risks for human health. In Critical Reviews in Food Science and Nutrition (Vol. 58, Issue 2, pp. 178–193). Taylor and Francis Inc. https://doi.org/10.1080/10408398.2016.1141165

157. Vidaček, S. (2013). Seafood. In Food Safety Management: A Practical Guide for the Food Industry (pp. 189–212). Elsevier. https://doi.org/10.1016/B978-0-12-381504-0.00008-1

158. Vitali, C., Peters, R. J. B., Janssen, H. G., & Nielen, M. W. F. (2023). Microplastics and nanoplastics in food, water, and beverages; part I. occurrence. In TrAC - Trends in Analytical Chemistry (Vol. 159). Elsevier B.V. https://doi.org/10.1016/j.trac.2022.116670

159. Vitali, C., Peters, R. J. B., Janssen, H.-G., Nielen, M. W. F., & Ruggeri, F. S. (2022). Microplastics and nanoplastics in food, water, and beverages, part II. Methods. TrAC Trends in Analytical Chemistry, 157, 116819. https://doi.org/10.1016/j.trac.2022.116819

160. Wang, R., Sang, P., Guo, Y., Jin, P., Cheng, Y., Yu, H., Xie, Y., Yao, W., & Qian, H. (2023). Cadmium in food: Source, distribution and removal. Food Chemistry, 405, 134666. https://doi.org/10.1016/j.foodchem.2022.134666

161. Wen, A., Yuan, S., Wang, H., Mi, S., Yu, H., Guo, Y., Xie, Y., Qian, H., & Yao, W. (2024). Molecular insights on the binding of chlortetracycline to bovine casein and its effect on the thermostability of chlortetracycline. Food Chemistry, 432, 137104. https://doi.org/10.1016/j.foodchem.2023.137104

162. Xia, H., Zhang, H., Zhu, Z., Tong, K. xuan, Chang, Q., Zhang, H., Fan, C., & Chen, H. (2024). Rapid determination of eight biogenic amines in air-dried yak meat by QuEChERS combined with ultra-performance liquid chromatography-mass spectrometry. Journal of Food Composition and Analysis, 133, 106466. https://doi.org/10.1016/j.jfca.2024.106466

163. Xu, X., Liu, X., Zhang, J., Liang, L., Wen, C., Li, Y., Shen, M., Wu, Y., He, X., Liu, G., & Xu, X. (2023). Formation, migration, derivation, and generation mechanism of polycyclic aromatic hydrocarbons during frying. Food Chemistry, 425, 136485. https://doi.org/10.1016/j.foodchem.2023.136485

164. Zhang, J., Chen, R., Zhou, H., Wen, D., Lu, Q., Xiong, J., & Wang, C. (2024). Prevalence of aflatoxin B1 in four kinds of fermented soybean-related products used as traditional Chinese food. LWT, 191. https://doi.org/10.1016/j.lwt.2023.115611

165. Zhang, Y., Zhang, Y., Jia, J., Peng, H., Qian, Q., Pan, Z., & Liu, D. (2023). Nitrite and nitrate in meat processing: Functions and alternatives. Current Research in Food Science, 6, 100470. https://doi.org/10.1016/j.crfs.2023.100470

166. Zhang, Z., Zhang, H., Tian, D., Phan, A., Seididamyeh, M., Alanazi, M., Ping Xu, Z., Sultanbawa, Y., & Zhang, R. (2024). Luminescent sensors for residual antibiotics detection in food: Recent advances and perspectives. Coordination Chemistry Reviews, 498, 215455. https://doi.org/10.1016/j.ccr.2023.215455

167. Zhao, L., Szakas, T., Churley, M., & Lucas, D. (2019). Multi-class multi-residue analysis of pesticides in edible oils by gas chromatography-tandem mass spectrometry using liquid-liquid extraction and enhanced matrix removal lipid cartridge cleanup. Journal of Chromatography A, 1584, 1–12. https://doi.org/10.1016/j.chroma.2018.11.022

168. Zurier, H. S., & Goddard, J. M. (2021). Biodegradation of microplastics in food and agriculture. Current Opinion in Food Science, 37, 37–44. https://doi.org/10.1016/j.cofs.2020.09.001


Supplementary files

Review

For citations:


Lavrukhina O.I., Makarov D.A., Kozeicheva E.S., Balagula T.V., Tretyakov A.V., Gergel M.A., Lozovaya E.A. Chemical Contaminants in Ready-to-Eat Food Products: Control and Contamination Mitigation (A Scoping Review). FOOD METAENGINEERING. 2025;3(2). https://doi.org/10.37442/fme.2025.2.78

Views: 76


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-6497 (Online)