The development of a modified packaging material with antioxidant properties and the study of its sanitary and hygienic characteristics
https://doi.org/10.37442/fme.2024.1.47
Abstract
Introduction: The development and use of modified polyolefin films as packaging materials is a promising direction for the improvement of modern food packaging, particularly dairy products. By targeted modification, it is possible to create an "active package" that has a set of desired properties. For example, the packaging can contain substances with antimicrobial or antioxidant effects that are activated when the packaged product comes into contact with them.
Purpose: This study aims to investigate the effect of adding calcium carbonate to a polyethylene film and antioxidant dihydroquercetin on its sanitary and hygiene properties.
Materials and methods: The objects of research were samples of developed film filled with calcium carbonate (CaCO3) and dihydroquercetin (DKV), which were selected. The development and production of the materials was carried out on an experimental site using an SJ-28 laboratory extruder. Samples of film were produced using a pre-prepared super concentrate. Sanitary, chemical, and organoleptic tests were performed in accordance with TRTS 005/2011 “On Packaging Safety” and GOST 34174-2017, as well as instructions from the Ministry of Health, MI 880-71.
Results: Using the methodology of combining polymer bases, mineral and organic fillers in a melt, it was possible to produce a modified film packaging material. An algorithm for the technology was proposed and modes for obtaining samples with different contents of injected substances were worked out. Organoleptic and sanitary-chemical tests of the obtained samples confirmed their sanitary and hygiene safety at selected filler concentrations and extrusion conditions.
Conclusions: The data obtained on the production of filled modified films showed the technological suitability of the chosen method, mode, and component composition. Comprehensive organoleptic and chemical-sanitary tests have shown the absence of excessive odor and the lack of migration of low-molecular-weight substances and oxidation products in model media.
Keywords
About the Authors
Dmitry Mikhailovich MyalenkoAll-Russian Dairy Research Institute
Russian Federation
Head of the Laboratory for Packaging Technologies, Senior Researcher, and Candidate of Technical Sciences
Olga Borisovna Fedotova
All-Russian Dairy Research Institute
Russian Federation
Scientific Secretary, Doctor of Technical Sciences
Aleksandr Aleksandrovich Agarkov
All-Russian Dairy Research Institute
Russian Federation
Junior Researcher, Candidate of Technical Sciences
Sergey Sergeevich Sirotin
Russian Federation
graduate student
References
1. Arif, H., Yasir, M., Ali, F., Nazir, A., Ali, A., Al Huwayz, M., Alwadai, N., & Iqbal, M. (2023). Photocatalytic degradation of atrazine and abamectin using Chenopodium album leaves extract mediated copper oxide nanoparticles. Zeitschrift Für Physikalische Chemie, 237(6), 689–705. https://doi.org/10.1515/zpch-2023-0224
2. Bartczak, Z., Argon, A. ., Cohen, R. ., & Weinberg, M. (1999). Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer, 40(9), 2347–2365. https://doi.org/10.1016/S0032-3861(98)00444-3
3. Bhunia, K., Sablani, S. S., Tang, J., & Rasco, B. (2013). Migration of Chemical Compounds from Packaging Polymers during Microwave, Conventional Heat Treatment, and Storage. Comprehensive Reviews in Food Science and Food Safety, 12(5), 523–545. https://doi.org/10.1111/1541-4337.12028
4. Boutillier, S., Casadella, V., & Laperche, B. (2021). Economy – Innovation Economics and the Dynamics of Interactions. In Innovation Economics, Engineering and Management Handbook 1 (pp. 1–23). Wiley. https://doi.org/10.1002/9781119832492.ch1
5. Dopico-Garcı́a, M. S., López-Vilariño, J. M., & González-Rodrı́guez, M. V. (2003). Determination of antioxidant migration levels from low-density polyethylene films into food simulants. Journal of Chromatography A, 1018(1), 53–62. https://doi.org/10.1016/j.chroma.2003.08.025
6. Fedotova, O. B., & Pryanichnikova, N. S. (2021). Research of the polyethylene packaging layer structure change in contact with a food product at exposure to ultraviolet radiation. Food Systems, 4(1), 56–61. https://doi.org/10.21323/2618-9771-2021-4-1-56-61
7. Galotto, M. J., & Guarda, A. (2004). Suitability of alternative fatty food simulants to study the effect of thermal and microwave heating on overall migration of plastic packaging. Packaging Technology and Science: An International Journal, 17(4), 219-223. (n.d.) doi 10.1002/pts.660.
8. Hadal, R. S., & Misra, R. D. K. (2004). The influence of loading rate and concurrent microstructural evolution in micrometric talc- and wollastonite-reinforced high isotactic polypropylene composites. Materials Science and Engineering: A, 374(1–2), 374–389. https://doi.org/10.1016/J.MSEA.2004.03.035
9. Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014
10. Hansen, E., Nilsson, N. H., Lithner, D., & Lassen, C. (2013). Hazardous substances in plastic materials. COWI in cooperation with Danish Technological Institute, 7-8. (n.d.).
11. Illarionova, E. E., Turovskaya, S. N., & Radaeva, I. A. (2020). To the question of increasing of canned milk storage life. Actual Issues of the Dairy Industry, Intersectoral Technologies and Quality Management Systems, 225–230. https://doi.org/10.37442/978-5-6043854-1-8-2020-1-225-230
12. Kirsh, I., Frolova, Y., Bannikova, O., Beznaeva, O., Tveritnikova, I., Myalenko, D., Romanova, V., & Zagrebina, D. (2020). Research of the Influence of the Ultrasonic Treatment on the Melts of the Polymeric Compositions for the Creation of Packaging Materials with Antimicrobial Properties and Biodegrability. Polymers 2020, Vol. 12, Page 275, 12(2), 275. https://doi.org/10.3390/POLYM12020275
13. Maurer, F. H. J., Kosfeld, R., & Uhlenbroich, T. (1985). Interfacial interaction in kaolin-filled polyethylene composites. Colloid & Polymer Science, 263(8), 624–630. https://doi.org/10.1007/BF01419886
14. Nowaczyk, G., Głowinkowski, S., & Jurga, S. (2004). Rheological and NMR studies of polyethylene/calcium carbonate composites. Solid State Nuclear Magnetic Resonance, 25(1–3), 194–199. https://doi.org/10.1016/J.SSNMR.2003.07.003
15. Rothon, R. N. (1999). Mineral fillers in thermoplastics: Filler manufacture and characterisation. Advances in Polymer Science, 139, 68–107. https://doi.org/10.1007/3-540-69220-7_2/COVER
16. Thio, Y. S., Argon, A. S., Cohen, R. E., & Weinberg, M. (2002a). Toughening of isotactic polypropylene with CaCO3 particles. Polymer, 43(13), 3661–3674. https://doi.org/10.1016/S0032-3861(02)00193-3
17. Thio, Y. S., Argon, A. S., Cohen, R. E., & Weinberg, M. (2002b). Toughening of isotactic polypropylene with CaCO 3 particles. Polymer, 43(13), 3661–3674. https://doi.org/10.1016/S0032-3861(02)00193-3
18. Tiemprateeb, S., Hemachandra, K., & Suwanprateeb, J. (2000). A comparison of degree of properties enhancement produced by thermal annealing between polyethylene and calcium carbonate–polyethylene composites. Polymer Testing, 19(3), 329–339. https://doi.org/10.1016/S0142-9418(98)00099-3
19. Zobkova, Z. S., Fursova, T. P., & Zenina, D. V. (2018). Protein ingredients selection, enriching and modifying the oxidum drinks structure. Aktualnye Voprosy Industrii Napitkov, 64–69. https://doi.org/10.21323/978-5-6041190-3-7-2018-2-64-69
20. Зобкова.З.С. (2006). Пороки молока и молочных продуктов. причины возникновения и меры предотвращения. Москва. 2006. P. 99
21. Мяленко, Д. М., Федотова О.Б. (2022). Surface morphology of polyethylene film samples filled with titanium dioxide. Food Processing Industry, 3, 56–59. https://doi.org/10.52653/PPI.2022.3.3.013
22. Тимошков, П.Н., & Коган, Д. И. (2013). Современные технологии производства полимерных композиционных материалов нового поколения. Труды ВИАМ, №4. С 1- 21 https://cyberleninka.ru/article/n/sovremennye-tehnologii-proizvodstva-polimernyh-kompozitsionnyh-materialov-novogo-pokoleniya
23. Хатко, З.Н. & Аршинова, А. А. (2016). Полимерные композиции для пленок пищевого назначения (обзор). Новые Технологии, №1. С 1 - 6 https://cyberleninka.ru/article/n/polimernye-kompozitsii-dlya-plenok-pischevogo-naznacheniya-obzor
24. Пряничникова Н.С. (2020a). Защитные покрытия для пищевых продуктов. Современные Достижения Биотехнологии. Техника, Технологии и Упаковка Для Реализации Инновационных Проектов На Предприятиях Пищевой и Биотехнологической Промышленности Материалы VII Международной Научно-Практической Конференции. Пятигорск, 2020, 86–89. https://www.elibrary.ru/item.asp?id=44488632
25. Пряничникова Н.С. (2020b). Съедобная упаковка: транспорт для функциональных и биоактивных соединений. Молочная Река, 4 (80), 32–34. https://elibrary.ru/item.asp?id=44597968
26. Розалёнок, Т.А. & Сидорин.Ю.Ю (2014). Исследование и разработка антимикробной композиции для пищевых упаковок. Техника и Технология Пищевых Производств, 2 (33). https://cyberleninka.ru/article/n/issledovanie-i-razrabotka-antimikrobnoy-kompozitsii-dlya-pischevyh-upakovok
27. Федотова.О.Б., Мяленко Д.М., & Шалаева А.В. (2010). “активная упаковка” из полимерных материалов. Пищевая Промышленность, 1. 22 - 23. https://cyberleninka.ru/article/n/aktivnaya-upakovka-iz-polimernyh-materialov
28. Федотова, О. Б. (2008). Упаковка для молока и молочных продуктов. Качество и безопасность. Издательство Россельхозакадемии, 98.
29. Фильчакова С.А. (2008). Микробиологическая чистота упаковки для молочных продуктов. Молочная Промышленность, 7, 44–46. https://www.elibrary.ru/item.asp?id=13794014
30. Чеботарь, А.М., Бомина, О.В. Перегудов, М.Г., Снежко, А.Г., Кузнецова, Л.С., Кулаева, Г.В., Борисова, З.С., Донцова, Э.П. (1999). Пленки с антимикробными свойствами. Сыроделие, 3, 16–18.
31. Юрова Е.А. (2019). Оценка качества и хранимоспособности молочных продуктов функциональной направленности. Milk Branch Magazine, 10, 6–11. https://doi.org/10.33465/2222-5455-2019-10-6-10
Supplementary files
Review
For citations:
Myalenko D.M., Fedotova O.B., Agarkov A.A., Sirotin S.S. The development of a modified packaging material with antioxidant properties and the study of its sanitary and hygienic characteristics. FOOD METAENGINEERING. 2024;2(1). (In Russ.) https://doi.org/10.37442/fme.2024.1.47