Application of omics methods to the study of endophytic microorganisms: Scoping Review
https://doi.org/10.37442/fme.2024.1.44
Abstract
Introduction: Grain crops form the basis of food security in many regions, including Kuzbass. However, they face the threat of decreasing yields due to biotic stressors. An effective solution might be the use of endophytic microorganisms. Their interaction with plants, however, has not been sufficiently studied yet. Omics technology provides an opportunity to investigate these relationships in depth, leading to increased grain productivity. Purpose and Research Questions: Generalization and systematization of knowledge regarding endophytic microbes obtained through omics techniques.Materials and methods: A search was conducted from December 4 to 18, 2023, in the databases of Scopus, ScienceDirect, and GoogleScholar using keywords such as endophytes, endosphere, RNA, transcriptome, genes, wheat, barley, and oats. No time limit was set for the search. Out of 239 relevant publications, 62 were selected based on inclusion criteria. The subject field review was conducted using the PRISMA-ScR protocol.Results: As a result of the search, 62 sources were found dedicated to the study of endophytic behavior using modern molecular genetic research methods. The analysis revealed the following trends in the utilization of endophyte microorganisms: the development of microbial bio-stimulators for agricultural crops and the use as agents for biological control of plant diseases. These trends are consistent with earlier reviews on this subject area, but in contrast to previous studies, there is a focus on realizing the genetic potential of microbiota and exploring the possibilities of modernizing microbial genetic information.Conclusions: It is necessary to expand the scope of molecular genetic methods in the study of endophytic microorganisms, as their use as biocontrol agents could become a promising strategy for sustainable development in the agro-industry. Special attention should be paid to the investigation of the relationship between these microbes and cereals, as there is currently insufficient information available in the scientific literature on this subject.
About the Author
Alexander Yurievich ProsekovRussian Federation
Chief Scientific Officer
SPIN code: 5203-5725, AuthorID: 130915
References
1. Ali, S., Duan, J., Charles, T. C., & Glick, B. R. (2014). A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp. Journal of Theoretical Biology, 343, 193–198. https://doi.org/10.1016/j.jtbi.2013.10.007
2. Alkan, M., Özer, G., İmren, M., Özdemir, F., Morgounov, A., & Dababat, A. A. (2021). First Report of Fusarium culmorum and Microdochium bolleyi Causing Root Rot on Triticale in Kazakhstan. Plant Disease, 105(7), 2015. https://doi.org/10.1094/PDIS-12-20-2659-PDN
3. Al-Sadi, A. M. (2021). Bipolaris sorokiniana-Induced Black Point, Common Root Rot, and Spot Blotch Diseases of Wheat: A Review. Frontiers in Cellular and Infection Microbiology, 11, 584899. https://doi.org/10.3389/fcimb.2021.584899
4. Ambrose, K. V., Tian, Z., Wang, Y., Smith, J., Zylstra, G., Huang, B., &
5. Belanger, F. C. (2015). Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae. Scientific Reports, 5(1), 10939. https://doi.org/10.1038/srep10939
6. Baymiev, A. K., Gumenko, R. S., Vladimirova, A. A., Akimova, E. S.,
7. Vershinina, Z. R., & Baymiev, A. K. (2019). Artificial activation of nif gene expression in nodule bacteria Ex Planta. Ecological Genetics, 17(2), 35–42. https://doi.org/10.17816/ecogen17235-42
8. Becker, Y., Eaton, C. J., Brasell, E., May, K. J., Becker, M., Hassing, B., Cartwright, G. M., Reinhold, L., & Scott, B. (2015). The Fungal Cell-Wall Integrity MAPK Cascade Is Crucial for Hyphal Network Formation and Maintenance of Restrictive Growth of Epichloë festucae in Symbiosis With Lolium perenne. Molecular Plant-Microbe Interactions®, 28(1), 69–85. https://doi.org/10.1094/MPMI-06-14-0183-R
9. Bertalan, M., Albano, R., De Pádua, V., Rouws, L., Rojas, C., Hemerly, A., Teixeira, K., Schwab, S., Araujo, J., Oliveira, A., França, L., Magalhães, V., Alquéres, S., Cardoso, A., Almeida, W., Loureiro, M. M., Nogueira, E., Cidade, D., Oliveira, D., … Ferreira, P. C. (2009). Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics, 10(1), 450. https://doi.org/10.1186/1471-2164-10-450
10. Boyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y., & Attree, I. (2009). Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: What can be learned from available microbial genomic resources? BMC Genomics, 10(1), 104. https://doi.org/10.1186/1471-2164-10-104
11. Card, S. D., Faville, M. J., Simpson, W. R., Johnson, R. D., Voisey, C. R.,
12. De Bonth, A. C. M., & Hume, D. E. (2014). Mutualistic fungal endophytes in the Triticeae –Survey and description. FEMS Microbiology Ecology, 88(1), 94–106. https://doi.org/10.1111/1574-6941.12273
13. Comby, M., Gacoin, M., Robineau, M., Rabenoelina, F., Ptas, S., Dupont, J.,
14. Profizi, C., & Baillieul, F. (2017). Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiological Research, 202, 11–20. https://doi.org/10.1016/j.micres.2017.04.014
15. Constantin, M. E., De Lamo, F. J., Vlieger, B. V., Rep, M., & Takken, F. L. W. (2019). Endophyte-Mediated Resistance in Tomato to Fusarium oxysporum Is Independent of ET, JA, and SA. Frontiers in Plant Science, 10, 979. https://doi.org/10.3389/fpls.2019.00979
16. De Palma, M., Salzano, M., Villano, C., Aversano, R., Lorito, M., Ruocco, M., Docimo, T., Piccinelli, A. L., D’Agostino, N., & Tucci, M. (2019). Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. Horticulture Research, 6(1), 5. https://doi.org/10.1038/s41438-018-0079-1
17. Demtröder, L., Pfänder, Y., Schäkermann, S., Bandow, J. E., & Masepohl, B. (2019). NifA is the master regulator of both nitrogenase systems in Rhodobacter capsulatus. MicrobiologyOpen, 8(12), e921. https://doi.org/10.1002/mbo3.921
18. Downie, J. A. (2010). The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiology Reviews, 34(2), 150–170. https://doi.org/10.1111/j.1574-6976.2009.00205.x
19. Eida, A. A., Alzubaidy, H. S., De Zélicourt, A., Synek, L., Alsharif, W., Lafi, F. F., Hirt, H., & Saad, M. M. (2019). Phylogenetically diverse endophytic bacteria from desert plants induce transcriptional changes of tissue-specific ion transporters and salinity stress in Arabidopsis thaliana. Plant Science, 280, 228–240. https://doi.org/10.1016/j.plantsci.2018.12.002
20. Figueroa, M., Hammond-Kosack, K. E., & Solomon, P. S. (2018). A review of wheat diseases – a field perspective. Molecular Plant Pathology, 19(6), 1523–1536. https://doi.org/10.1111/mpp.12618
21. Fouts, D. E., Tyler, H. L., DeBoy, R. T., Daugherty, S., Ren, Q., Badger, J. H., Durkin, A. S., Huot, H., Shrivastava, S., Kothari, S., Dodson, R. J., Mohamoud, Y., Khouri, H., Roesch, L. F. W., Krogfelt, K. A., Struve, C., Triplett, E. W., & Methé, B. A. (2008). Complete Genome Sequence of the N2-Fixing Broad Host Range Endophyte Klebsiella pneumoniae 342 and Virulence Predictions Verified in Mice. PLoS Genetics, 4(7), e1000141. https://doi.org/10.1371/journal.pgen.1000141
22. Ghaffari, M. R., Ghabooli, M., Khatabi, B., Hajirezaei, M. R., Schweizer, P., & Salekdeh, G. H. (2016). Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Molecular Biology, 90(6), 699–717. https://doi.org/10.1007/s11103-016-0461-z
23. Gil-Gil, T., Cuesta, T., Hernando-Amado, S., Reales-Calderón, J. A., Corona, F., Linares, J. F., & Martínez, J. L. (2023). Virulence and metabolism crosstalk: Impaired activity of the Type three Secretion System (T3SS) in a Pseudomonas aeruginosa crc-defective mutant. International Journal of Molecular Sciences, 24(15), 12304. https://doi.org/10.3390/ijms241512304
24. Granzow, S., Kaiser, K., Wemheuer, B., Pfeiffer, B., Daniel, R., Vidal, S., & Wemheuer, F. (2017). The Effects of Cropping Regimes on Fungal and Bacterial Communities of Wheat and Faba Bean in a Greenhouse Pot Experiment Differ between Plant Species and Compartment. Frontiers in Microbiology, 8, 902. https://doi.org/10.3389/fmicb.2017.00902
25. Hao, K., Wang, F., Nong, X., McNeill, M. R., Liu, S., Wang, G., Cao, G., & Zhang, Z. (2017). Response of peanut Arachis hypogaea roots to the presence of beneficial and pathogenic fungi by transcriptome analysis. Scientific Reports, 7(1), 964. https://doi.org/10.1038/s41598-017-01029-3
26. Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Radhakrishnan, R., & Kumar, A. (2017). Plant defense approach of Bacillus subtilis (BERA 71) against Macrophomina phaseolina (Tassi) Goid in mung bean. Journal of Plant Interactions, 12(1), 390–401. https://doi.org/10.1080/17429145.2017.1373871
27. Ikram, M., Ali, N., Jan, G., Jan, F. G., & Khan, N. (2020). Endophytic fungal diversity and their interaction with plants for agriculture sustainability under stressful condition. Recent Patents on Food, Nutrition & Agriculture, 11(2), 115–123. https://doi.org/10.2174/2212798410666190612130139
28. Jiang, C.-H., Xie, Y.-S., Zhu, K., Wang, N., Li, Z.-J., Yu, G.-J., & Guo, J.-H. (2019). Volatile organic compounds emitted by Bacillus sp. JC03 promote plant growth through the action of auxin and strigolactone. Plant Growth Regulation, 87(2), 317–328. https://doi.org/10.1007/s10725-018-00473-z
29. Jiang, Y., Wang, L., Lu, S., Xue, Y., Wei, X., Lu, J., & Zhang, Y. (2019). Transcriptome sequencing of Salvia miltiorrhiza after infection by its endophytic fungi and identification of genes related to tanshinone biosynthesis. Pharmaceutical Biology, 57(1), 760–769. https://doi.org/10.1080/13880209.2019.1680706
30. Kage, U., Karre, S., Kushalappa, A. C., & McCartney, C. (2017). Identification and characterization of a fusarium head blight resistance gene Ta ACT in wheat QTL ‐2 DL. Plant Biotechnology Journal, 15(4), 447–457. https://doi.org/10.1111/pbi.12641
31. Karlsson, I., Friberg, H., Kolseth, A., Steinberg, C., & Persson, P. (2017). Organic farming increases richness of fungal taxa in the wheat phyllosphere. Molecular Ecology, 26(13), 3424–3436. https://doi.org/10.1111/mec.14132
32. Kothe, E., & Turnau, K. (2018). Editorial: Mycorrhizosphere Communication: Mycorrhizal Fungi and Endophytic Fungus-Plant Interactions. Frontiers in Microbiology, 9, 3015. https://doi.org/10.3389/fmicb.2018.03015
33. Kumar, J., Ramlal, A., Mallick, D., & Mishra, V. (2021). An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. Plants, 10(6), 1185. https://doi.org/10.3390/plants10061185
34. Kwak, M.-J., Song, J. Y., Kim, S.-Y., Jeong, H., Kang, S. G., Kim, B. K., Kwon, S.-K., Lee, C. H., Yu, D. S., Park, S.-H., & Kim, J. F. (2012). Complete Genome Sequence of the Endophytic Bacterium Burkholderia sp. Strain KJ006. Journal of Bacteriology, 194(16), 4432–4433. https://doi.org/10.1128/JB.00821-12
35. Lahrmann, U., & Zuccaro, A. (2012). Opprimo ergo sum – Evasion and Suppression in the Root Endophytic Fungus Piriformospora indica. Molecular Plant-Microbe Interactions®, 25(6), 727–737. https://doi.org/10.1094/MPMI-11-11-0291
36. Larran, S., Simón, M. R., Moreno, M. V., Siurana, M. P. S., & Perelló, A. (2016). Endophytes from wheat as biocontrol agents against tan spot disease. Biological Control, 92, 17–23. https://doi.org/10.1016/j.biocontrol.2015.09.002
37. Latz, M. A. C., Jensen, B., Collinge, D. B., & Jørgensen, H. J. L. (2018). Endophytic fungi as biocontrol agents: Elucidating mechanisms in
38. disease suppression. Plant Ecology & Diversity, 11(5–6), 555–567. https://doi.org/10.1080/17550874.2018.1534146
39. Lengai, G. M. W., & Muthomi, J. W. (2018). Biopesticides and Their Role in Sustainable Agricultural Production. Journal of Biosciences and Medicines, 06(06), 7–41. https://doi.org/10.4236/jbm.2018.66002
40. Lu, C., Liu, H., Jiang, D., Wang, L., Jiang, Y., Tang, S., Hou, X., Han, X., Liu, Z., Zhang, M., Chu, Z., & Ding, X. (2019). Paecilomyces variotii extracts (ZNC) enhance plant immunity and promote plant growth. Plant and Soil, 441(1–2), 383–397. https://doi.org/10.1007/s11104-019-04130-w
41. Lu, H., Wei, T., Lou, H., Shu, X., & Chen, Q. (2021). A Critical Review on Communication Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic Stresses. Journal of Fungi, 7(9), 719. https://doi.org/10.3390/jof7090719
42. Mahoney, A. K., Yin, C., & Hulbert, S. H. (2017). Community Structure, Species Variation, and Potential Functions of Rhizosphere-Associated Bacteria of Different Winter Wheat (Triticum aestivum) Cultivars. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00132
43. Malinich, E. A., Wang, K., Mukherjee, P. K., Kolomiets, M., & Kenerley, C. M. (2019). Differential expression analysis of Trichoderma virens RNA reveals a dynamic transcriptome during colonization of Zea mays roots. BMC Genomics, 20(1), 280. https://doi.org/10.1186/s12864-019-5651-z
44. Molecular Mechanisms of Succinate Dehydrogenase Inhibitor Resistance in Phytopathogenic Fungi. (2020). Research in Plant Disease, 26(1), 1–7. https://doi.org/10.5423/RPD.2020.26.1.1
45. Morales-Cedeño, L. R., Orozco-Mosqueda, Ma. D. C., Loeza-Lara, P. D.,
46. Parra-Cota, F. I., De Los Santos-Villalobos, S., & Santoyo, G. (2021). Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and
47. future perspectives. Microbiological Research, 242, 126612. https://doi.org/10.1016/j.micres.2020.126612
48. Pandey, V., Ansari, M. W., Tula, S., Yadav, S., Sahoo, R. K., Shukla, N., Bains, G., Badal, S., Chandra, S., Gaur, A. K., Kumar, A., Shukla, A., Kumar, J., &
49. Tuteja, N. (2016). Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta, 243(5), 1251–1264. https://doi.org/10.1007/s00425-016-2482-x
50. Pankievicz, V. C. S., Camilios-Neto, D., Bonato, P., Balsanelli, E., Tadra-Sfeir, M. Z., Faoro, H., Chubatsu, L. S., Donatti, L., Wajnberg, G., Passetti, F., Monteiro, R. A., Pedrosa, F. O., & Souza, E. M. (2016). RNA-seq transcriptional profiling of Herbaspirillum seropedicae colonizing wheat (Triticum aestivum) roots. Plant Molecular Biology, 90(6), 589–603. https://doi.org/10.1007/s11103-016-0430-6
51. Plett, J. M., & Martin, F. M. (2018). Know your enemy, embrace your friend: Using omics to understand how plants respond differently to pathogenic
52. and mutualistic microorganisms. The Plant Journal, 93(4), 729–746. https://doi.org/10.1111/tpj.13802
53. Qin, S., Feng, W.-W., Zhang, Y.-J., Wang, T.-T., Xiong, Y.-W., & Xing, K. (2018). Diversity of Bacterial Microbiota of Coastal Halophyte Limonium sinense and Amelioration of Salinity Stress Damage by Symbiotic Plant
54. Growth-Promoting Actinobacterium Glutamicibacter halophytocola KLBMP 5180. Applied and Environmental Microbiology, 84(19), e01533-18. https://doi.org/10.1128/AEM.01533-18
55. Reinhold-Hurek, B., & Hurek, T. (2011). Living inside plants: Bacterial endophytes. Current Opinion in Plant Biology, 14(4), 435–443. https://doi.org/10.1016/j.pbi.2011.04.004
56. Rojas, E. C., Jensen, B., Jørgensen, H. J. L., Latz, M. A. C., Esteban, P., Ding, Y., & Collinge, D. B. (2020). Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biological Control, 144, 104222. https://doi.org/10.1016/j.biocontrol.2020.104222
57. Sánchez-Vallet, A., Mesters, J. R., & Thomma, B. P. H. J. (2015). The battle for chitin recognition in plant-microbe interactions. FEMS Microbiology Reviews, 39(2), 171–183. https://doi.org/10.1093/femsre/fuu003
58. Sánchez-Vallet, A., Saleem-Batcha, R., Kombrink, A., Hansen, G., Valkenburg, D.-J., Thomma, B. P., & Mesters, J. R. (2013). Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife, 2, e00790. https://doi.org/10.7554/eLife.00790
59. Santoyo, G., Moreno-Hagelsieb, G., Del Carmen Orozco-Mosqueda, Ma., &
60. Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92–99. https://doi.org/10.1016/j.micres.2015.11.008
61. Segmüller, N., Kokkelink, L., Giesbert, S., Odinius, D., Van Kan, J., & Tudzynski, P. (2008). NADPH Oxidases Are Involved in Differentiation and Pathogenicity in Botrytis cinerea. Molecular Plant-Microbe Interactions®, 21(6), 808–819. https://doi.org/10.1094/MPMI-21-6-0808
62. Sowa, S. W., Gelderman, G., Leistra, A. N., Buvanendiran, A., Lipp, S., Pitaktong, A., Vakulskas, C. A., Romeo, T., Baldea, M., & Contreras, L. M. (2017). Integrative FourD omics approach profiles the target network of the carbon storage regulatory system. Nucleic Acids Research, gkx048. https://doi.org/10.1093/nar/gkx048
63. Straub, D., Yang, H., Liu, Y., Tsap, T., & Ludewig, U. (2013). Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30T. Journal of Experimental Botany, 64(14), 4603–4615. https://doi.org/10.1093/jxb/ert276
64. Sugawara, S., Mashiguchi, K., Tanaka, K., Hishiyama, S., Sakai, T., Hanada, K., Kinoshita-Tsujimura, K., Yu, H., Dai, X., Takebayashi, Y., Takeda-Kamiya, N., Kakimoto, T., Kawaide, H., Natsume, M., Estelle, M., Zhao, Y., Hayashi, K., Kamiya, Y., & Kasahara, H. (2015). Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants. Plant and Cell Physiology, 56(8), 1641–1654. https://doi.org/10.1093/pcp/pcv088
65. Sun, S., Sidhu, V., Rong, Y., & Zheng, Y. (2018). Pesticide Pollution in Agricultural Soils and Sustainable Remediation Methods: A Review. Current Pollution Reports, 4(3), 240–250. https://doi.org/10.1007/s40726-018-0092-x
66. Syed Ab Rahman, S. F., Singh, E., Pieterse, C. M. J., & Schenk, P. M. (2018). Emerging microbial biocontrol strategies for plant pathogens. Plant Science, 267, 102–111. https://doi.org/10.1016/j.plantsci.2017.11.012
67. Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., Weyens, N.,
68. Barac, T., Vangronsveld, J., & Van Der Lelie, D. (2009). Genome Survey and Characterization of Endophytic Bacteria Exhibiting a Beneficial Effect on Growth and Development of Poplar Trees. Applied and Environmental Microbiology, 75(3), 748–757. https://doi.org/10.1128/AEM.02239-08
69. Tao, Y., Jia, C., Jing, J., Zhang, J., Yu, P., He, M., Wu, J., Chen, L., & Zhao, E. (2021). Occurrence and dietary risk assessment of 37 pesticides in wheat fields in the suburbs of Beijing, China. Food Chemistry, 350, 129245. https://doi.org/10.1016/j.foodchem.2021.129245
70. Terblanche, J. S., Hoffmann, A. A., Mitchell, K. A., Rako, L., Le Roux, P. C., & Chown, S. L. (2011). Ecologically relevant measures of tolerance to potentially lethal temperatures. Journal of Experimental Biology, 214(22), 3713–3725. https://doi.org/10.1242/jeb.061283
71. Utturkar, S. M., Cude, W. N., Robeson, M. S., Yang, Z. K., Klingeman, D. M., Land, M. L., Allman, S. L., Lu, T.-Y. S., Brown, S. D., Schadt, C. W., Podar, M., Doktycz, M. J., & Pelletier, D. A. (2016). Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis. Applied and Environmental Microbiology, 82(18), 5698–5708. https://doi.org/10.1128/AEM.01285-16
72. Vahabi, K., Sherameti, I., Bakshi, M., Mrozinska, A., Ludwig, A., & Oelmüller, R. (2015). Microarray analyses during early and later stages of the Arabidopsis/ Piriformospora indica interaction. Genomics Data, 6, 16–18. https://doi.org/10.1016/j.gdata.2015.07.019
73. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206(4), 1196–1206. https://doi.org/10.1111/nph.13312
74. Vibhuti, M., Kumar, A., Sheoran, N., Nadakkakath, A. V., & Eapen, S. J. (2017). Molecular Basis of Endophytic Bacillus megaterium-induced Growth Promotion in Arabidopsis thaliana: Revelation by Microarray-based Gene Expression Analysis. Journal of Plant Growth Regulation, 36(1), 118–130. https://doi.org/10.1007/s00344-016-9624-z
75. Ważny, R., Rozpądek, P., Domka, A., Jędrzejczyk, R. J., Nosek, M.,
76. Hubalewska-Mazgaj, M., Lichtscheidl, I., Kidd, P., & Turnau, K. (2021). The effect of endophytic fungi on growth and nickel accumulation in Noccaea hyperaccumulators. Science of The Total Environment, 768, 144666. https://doi.org/10.1016/j.scitotenv.2020.144666
77. Wei, W., Zhu, W., Cheng, J., Xie, J., Jiang, D., Li, G., Chen, W., & Fu, Y. (2016). Nox Complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Scientific Reports, 6(1). https://doi.org/10.1038/srep24325
78. Weilharter, A., Mitter, B., Shin, M. V., Chain, P. S. G., Nowak, J., & Sessitsch, A. (2011). Complete Genome Sequence of the Plant Growth-Promoting Endophyte Burkholderia phytofirmans Strain PsJN. Journal of Bacteriology, 193(13), 3383–3384. https://doi.org/10.1128/JB.05055-11
79. Yan, Y., Yang, J., Dou, Y., Chen, M., Ping, S., Peng, J., Lu, W., Zhang, W., Yao, Z., Li, H., Liu, W., He, S., Geng, L., Zhang, X., Yang, F., Yu, H., Zhan, Y., Li, D., Lin, Z., … Jin, Q. (2008). Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proceedings of the National Academy of Sciences, 105(21), 7564–7569. https://doi.org/10.1073/pnas.0801093105
80. Yin, C., Mueth, N., Hulbert, S., Schlatter, D., Paulitz, T. C., Schroeder, K.,
81. Prescott, A., & Dhingra, A. (2017). Bacterial Communities on Wheat Grown Under Long-Term Conventional Tillage and No-Till in the Pacific Northwest of the United States. Phytobiomes Journal, 1(2), 83–90. https://doi.org/10.1094/PBIOMES-09-16-0008-R
82. Zhang, W., Wang, J., Xu, L., Wang, A., Huang, L., Du, H., Qiu, L., & Oelmüller, R. (2018). Drought stress responses in maize are diminished by Piriformospora indica. Plant Signaling & Behavior, 13(1), e1414121. https://doi.org/10.1080/15592324.2017.1414121
83. Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.-L., Elliott, J., Ewert, F., Janssens, I. A., Li, T.,
84. Lin, E., Liu, Q., Martre, P., Müller, C., … Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114(35), 9326–9331. https://doi.org/10.1073/pnas.1701762114
85. Zhou, J., Li, X., Huang, P.-W., & Dai, C.-C. (2018). Endophytism or saprophytism: Decoding the lifestyle transition of the generalist fungus
86. Phomopsis liquidambari. Microbiological Research, 206, 99–112. https://doi.org/10.1016/j.micres.2017.10.005
Review
For citations:
Prosekov A.Yu. Application of omics methods to the study of endophytic microorganisms: Scoping Review. FOOD METAENGINEERING. 2024;2(1). (In Russ.) https://doi.org/10.37442/fme.2024.1.44