Preview

FOOD METAENGINEERING

Расширенный поиск

Применение методов omics в изучении эндофитных микроорганизмов: обзор предметного поля

https://doi.org/10.37442/fme.2024.1.44

Аннотация

Введение: Зерновые культуры являются основой продовольственной безопасности во многих регионах, в том числе в Кузбассе, но сталкиваются с угрозой снижения урожайности из-за биотических стрессов. Эффективным решением может стать использование эндофитных микроорганизмов, однако их взаимодействие с растениями еще недостаточно изучено. Omics-технологии предоставляют возможность детально изучить эти взаимоотношения, открывая путь к повышению продуктивности зерновых.

Цель и исследовательские вопросы: обобщение и систематизация знаний об эндофитных микроорганизмах, полученных с применением omics-ных технологий.

Материалы и методы: Поиск производился в период с 4 по 18 декабря 2023 г в базах данных Scopus, ScienceDirect, GoogleSchoolar по ключевым словам endophytes, endosphere, RNA, transcriptome, genes, wheat, barley, oats. Поиск не ограничивали по временному периоду. Из 239 релевантных с точки зрения ключевых слов публикаций, 62 соответствовали критериям включения. Обзор предметного поля опирается на протокол PRISMA-ScR.

Результаты: В результате поиска обнаружено 62 источника, посвященных изучению эндофитного поведения с применением современных молекулярно-генетических методов исследования. Проведенный анализ позволил выявить следующие тренды применения эндофитных микроорганизмов: разработка микробных биостимуляторов сельскохозяйственных культур; применение в качестве агентов биологического контроля инфекционных заболеваний растений. Выявленные тренды согласуются с предыдущими обзорами данной предметной области. В отличие от ранних исследований, акцент смещен на реализацию генетического потенциала микробиоты, рассматриваются возможности модернизации генетической информации микроорганизмов.

Выводы: Необходимо развитие сферы применения молекулярно-генетических методов для изучения эндофитных микроорганизмов, так как их применение в качестве биоконтроля может стать многообещающей стратегией устойчивого развития агропромышленного комплекса. Особенный акцент необходимо сделать на изучение взаимосвязи данных микроорганизмов и зерновых культур, так как на данный момент сведений в современной научной литературе недостаточно.

Об авторе

Александр Юрьевич Просеков
Кемеровский государственный университет
Россия

главный научный сотрудник

SPIN-код: 5203-5725, AuthorID: 130915



Список литературы

1. Ahmed, A., He, P., He, Y., Singh, B. K., Wu, Y., Munir, S., & He, P. (2023). Biocontrol of plant pathogens in omics era - With special focus on endophytic bacilli. Critical Reviews in Biotechnology, 43, 1–19. https://doi.org/10.1080/07388551.2023.2183379

2. Ali, S., Duan, J., Charles, T. C., & Glick, B. R. (2014). A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp. Journal of Theoretical Biology, 343, 193–198. https://doi.org/10.1016/j.jtbi.2013.10.007

3. Alkan, M., Özer, G., İmren, M., Özdemir, F., Morgounov, A., & Dababat, A. A. (2021). First report of Fusarium culmorum and Microdochium bolleyi causing root rot on triticale in Kazakhstan. Plant Disease, 105(7), 2015. https://doi.org/10.1094/PDIS-12-20-2659-PDN

4. Al-Sadi, A. M. (2021). Bipolaris sorokiniana-induced black point, common root rot, and spot blotch diseases of wheat: A review. Frontiers in Cellular and Infection Microbiology, 11, 584899. https://doi.org/10.3389/fcimb.2021.584899

5. Ambrose, K. V., Tian, Z., Wang, Y., Smith, J., Zylstra, G., Huang, B., & Belanger, F. C. (2015). Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae. Scientific Reports, 5(1), 10939. https://doi.org/10.1038/srep10939

6. Baymiev, A. K., Gumenko, R. S., Vladimirova, A. A., Akimova, E. S., Vershinina, Z. R., & Baymiev, A. K. (2019). Artificial activation of NIF gene expression in nodule bacteria Ex Planta. Ecological Genetics, 17(2), 35–42. https://doi.org/10.17816/ecogen17235-42

7. Becker, Y., Eaton, C. J., Brasell, E., May, K. J., Becker, M., Hassing, B., Cartwright, G. M., Reinhold, L., & Scott, B. (2015). The fungal cell-wall integrity MAPK cascade is crucial for рyphal network formation and maintenance of restrictive growth of Epichloë festucae in symbiosis with Lolium perenne. Molecular Plant-Microbe Interactions®, 28(1), 69–85. https://doi.org/10.1094/MPMI-06-14-0183-R

8. Bertalan, M., Albano, R., De Pádua, V., Rouws, L., Rojas, C., Hemerly, A., Teixeira, K., Schwab, S., Araujo, J., Oliveira, A., França, L., Magalhães, V., Alquéres, S., Cardoso, A., Almeida, W., Loureiro, M. M., Nogueira, E., Cidade, D., Oliveira, D., Simão, T., Macedo, Jacyara, Valadão, A., Dreschsel, M., Freitas, F., Vidal, M., Guedes, H., Rodrigues, E., Meneses, C., Brioso, P., Pozzer, L., Figueiredo, D., Montano, H., Junior, J., De Souza Filho, G., Martin Quintana Flores, V., Ferreira, B., Branco, A., Gonzalez, P., Guillobel, H., Lemos, M., Seibel, L., Macedo, José, Alves-Ferreira, M., Sachetto-Martins, G., Coelho, A., Santos, E., Amaral, G., Neves, A., Pacheco, A. B., Carvalho, D., Lery, L., Bisch, P., Rössle, S. C., Ürményi, T., Rael Pereira, A., Silva, R., Rondinelli, E., Von Krüger, W., Martins, O., Baldani, J. I., Ferreira, P. C. (2009). Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics, 10(1), 450. https://doi.org/10.1186/1471-2164-10-450

9. Boyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y., & Attree, I. (2009). Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: What can be learned from available microbial genomic resources? BMC Genomics, 10(1), 104. https://doi.org/10.1186/1471-2164-10-104

10. Card, S. D., Faville, M. J., Simpson, W. R., Johnson, R. D., Voisey, C. R.,

11. De Bonth, A. C. M., & Hume, D. E. (2014). Mutualistic fungal endophytes in the Triticeae –Survey and description. FEMS Microbiology Ecology, 88(1), 94–106. https://doi.org/10.1111/1574-6941.12273

12. Chetia, H., Kabiraj, D., Bharali, B., Ojha, S., Barkataki, M. P., Saikia, D., Singh, T., Mosahari, P. V., Sharma, P., & Bora, U. (2019). Exploring the benefits of endophytic fungi via omics. In B. P. Singh (Ed.), Advances in Endophytic Fungal Research (pp. 51–81). Springer International Publishing. https://doi.org/10.1007/978-3-030-03589-1_4

13. Comby, M., Gacoin, M., Robineau, M., Rabenoelina, F., Ptas, S., Dupont, J.,

14. Profizi, C., & Baillieul, F. (2017). Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiological Research, 202, 11–20. https://doi.org/10.1016/j.micres.2017.04.014

15. Constantin, M. E., De Lamo, F. J., Vlieger, B. V., Rep, M., & Takken, F. L. W. (2019). Endophyte-mediated resistance in tomato to Fusarium oxysporum is independent of ET, JA, and SA. Frontiers in Plant Science, 10, 979. https://doi.org/10.3389/fpls.2019.00979

16. De Palma, M., Salzano, M., Villano, C., Aversano, R., Lorito, M., Ruocco, M., Docimo, T., Piccinelli, A. L., D’Agostino, N., & Tucci, M. (2019). Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. Horticulture Research, 6(1), 5. https://doi.org/10.1038/s41438-018-0079-1

17. Demtröder, L., Pfänder, Y., Schäkermann, S., Bandow, J. E., & Masepohl, B. (2019). NifA is the master regulator of both nitrogenase systems in Rhodobacter capsulatus. MicrobiologyOpen, 8(12), e921. https://doi.org/10.1002/mbo3.921

18. Downie, J. A. (2010). The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiology Reviews, 34(2), 150–170. https://doi.org/10.1111/j.1574-6976.2009.00205.x

19. Eida, A. A., Alzubaidy, H. S., De Zélicourt, A., Synek, L., Alsharif, W., Lafi, F. F., Hirt, H., & Saad, M. M. (2019). Phylogenetically diverse endophytic bacteria from desert plants induce transcriptional changes of tissue-specific ion transporters and salinity stress in Arabidopsis thaliana. Plant Science, 280, 228–240. https://doi.org/10.1016/j.plantsci.2018.12.002

20. Fadiji, A. E., Ayangbenro, A. S., & Babalola, O. O. (2021). Unveiling the putative functional genes present in root-associated endophytic microbiome from maize plant using the shotgun approach. Journal of Applied Genetics, 62(2), 339–351. https://doi.org/10.1007/s13353-021-00611-w

21. Fadiji, A. E., & Babalola, O. O. (2020). Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi Journal of Biological Sciences, 27(12), 3622–3633. https://doi.org/10.1016/j.sjbs.2020.08.002

22. Figueroa, M., Hammond-Kosack, K. E., & Solomon, P. S. (2018). A review of wheat diseases – a field perspective. Molecular Plant Pathology, 19(6), 1523–1536. https://doi.org/10.1111/mpp.12618

23. Fouts, D. E., Tyler, H. L., DeBoy, R. T., Daugherty, S., Ren, Q., Badger, J. H., Durkin, A. S., Huot, H., Shrivastava, S., Kothari, S., Dodson, R. J., Mohamoud, Y., Khouri, H., Roesch, L. F. W., Krogfelt, K. A., Struve, C., Triplett, E. W., & Methé, B. A. (2008). Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genetics, 4(7), e1000141. https://doi.org/10.1371/journal.pgen.1000141

24. Ghaffari, M. R., Ghabooli, M., Khatabi, B., Hajirezaei, M. R., Schweizer, P., & Salekdeh, G. H. (2016). Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Molecular Biology, 90(6), 699–717. https://doi.org/10.1007/s11103-016-0461-z

25. Gil-Gil, T., Cuesta, T., Hernando-Amado, S., Reales-Calderón, J. A., Corona, F., Linares, J. F., & Martínez, J. L. (2023). Virulence and metabolism crosstalk: Impaired activity of the Type three Secretion System (T3SS) in a Pseudomonas aeruginosa crc-defective mutant. International Journal of Molecular Sciences, 24(15), 12304. https://doi.org/10.3390/ijms241512304

26. Granzow, S., Kaiser, K., Wemheuer, B., Pfeiffer, B., Daniel, R., Vidal, S., & Wemheuer, F. (2017). The effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment. Frontiers in Microbiology, 8, 902. https://doi.org/10.3389/fmicb.2017.00902

27. Hao, K., Wang, F., Nong, X., McNeill, M. R., Liu, S., Wang, G., Cao, G., & Zhang, Z. (2017). Response of peanut Arachis hypogaea roots to the presence of beneficial and pathogenic fungi by transcriptome analysis. Scientific Reports, 7(1), 964. https://doi.org/10.1038/s41598-017-01029-3

28. Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Radhakrishnan, R., & Kumar, A. (2017). Plant defense approach of Bacillus subtilis (BERA 71) against Macrophomina phaseolina (Tassi) Goid in mung bean. Journal of Plant Interactions, 12(1), 390–401. https://doi.org/10.1080/17429145.2017.1373871

29. Sang, H., Lee, H. B., Molecular Mechanisms of Succinate Dehydrogenase Inhibitor Resistance in Phytopathogenic Fungi. (2020). Res. Plant Dis, 26(1), 1–7. https://doi.org/10.5423/RPD.2020.26.1.1

30. Ikram, M., Ali, N., Jan, G., Jan, F. G., & Khan, N. (2020). Endophytic fungal diversity and their interaction with plants for agriculture sustainability under stressful condition. Recent Patents on Food, Nutrition & Agriculture, 11(2), 115–123. https://doi.org/10.2174/2212798410666190612130139

31. Jiang, C.-H., Xie, Y.-S., Zhu, K., Wang, N., Li, Z.-J., Yu, G.-J., & Guo, J.-H. (2019). Volatile organic compounds emitted by Bacillus sp. JC03 promote plant growth through the action of auxin and strigolactone. Plant Growth Regulation, 87(2), 317–328. https://doi.org/10.1007/s10725-018-00473-z

32. Jiang, Y., Wang, L., Lu, S., Xue, Y., Wei, X., Lu, J., & Zhang, Y. (2019). Transcriptome sequencing of Salvia miltiorrhiza after infection by its endophytic fungi and identification of genes related to tanshinone biosynthesis. Pharmaceutical Biology, 57(1), 760–769. https://doi.org/10.1080/13880209.2019.1680706

33. Kage, U., Karre, S., Kushalappa, A. C., & McCartney, C. (2017). Identification and characterization of a fusarium head blight resistance gene Ta ACT in wheat QTL‐2 DL. Plant Biotechnology Journal, 15(4), 447–457. https://doi.org/10.1111/pbi.12641

34. Karlsson, I., Friberg, H., Kolseth, A., Steinberg, C., & Persson, P. (2017). Organic farming increases richness of fungal taxa in the wheat phyllosphere. Molecular Ecology, 26(13), 3424–3436. https://doi.org/10.1111/mec.14132

35. Khare, E., Mishra, J., & Arora, N. K. (2018). Multifaceted Interactions Between Endophytes and Plant: Developments and Prospects. Frontiers in Microbiology, 9, 2732. https://doi.org/10.3389/fmicb.2018.02732

36. Kothe, E., & Turnau, K. (2018). Editorial: mycorrhizosphere communication: mycorrhizal fungi and endophytic fungus-plant interactions. Frontiers in Microbiology, 9, 3015. https://doi.org/10.3389/fmicb.2018.03015

37. Kumar, J., Ramlal, A., Mallick, D., & Mishra, V. (2021). An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants, 10(6), 1185. https://doi.org/10.3390/plants10061185

38. Kwak, M.-J., Song, J. Y., Kim, S.-Y., Jeong, H., Kang, S. G., Kim, B. K., Kwon, S.-K., Lee, C. H., Yu, D. S., Park, S.-H., & Kim, J. F. (2012). Complete genome sequence of the endophytic bacterium Burkholderia sp. Strain KJ006. Journal of Bacteriology, 194(16), 4432–4433. https://doi.org/10.1128/JB.00821-12

39. Lahrmann, U., & Zuccaro, A. (2012). Opprimo ergo sum – evasion and suppression in the root endophytic fungus Piriformospora indica. Molecular Plant-Microbe Interactions®, 25(6), 727–737. https://doi.org/10.1094/MPMI-11-11-0291

40. Larran, S., Simón, M. R., Moreno, M. V., Siurana, M. P. S., & Perelló, A. (2016). Endophytes from wheat as biocontrol agents against tan spot disease. Biological Control, 92, 17–23. https://doi.org/10.1016/j.biocontrol.2015.09.002

41. Latz, M. A. C., Jensen, B., Collinge, D. B., & Jørgensen, H. J. L. (2018). Endophytic fungi as biocontrol agents: Elucidating mechanisms in

42. disease suppression. Plant Ecology & Diversity, 11(5–6), 555–567. https://doi.org/10.1080/17550874.2018.1534146

43. Lengai, G. M. W., & Muthomi, J. W. (2018). Biopesticides and their role in sustainable agricultural production. Journal of Biosciences and Medicines, 06(06), 7–41. https://doi.org/10.4236/jbm.2018.66002

44. Li, J., Wu, H., Pu, Q., Zhang, C., Chen, Y., Lin, Z., Hu, X., Li, O. (2023). Complete genome of Sphingomonas paucimobilis ZJSH1, an endophytic bacterium from Dendrobium officinale with stress resistance and growth promotion potential. Archives of Microbiology, 205(4), 132. https://doi.org/10.1007/s00203-023-03459-2

45. Lu, C., Liu, H., Jiang, D., Wang, L., Jiang, Y., Tang, S., Hou, X., Han, X., Liu, Z., Zhang, M., Chu, Z., & Ding, X. (2019). Paecilomyces variotii extracts (ZNC) enhance plant immunity and promote plant growth. Plant and Soil, 441(1–2),

46. –397. https://doi.org/10.1007/s11104-019-04130-w

47. Lu, H., Wei, T., Lou, H., Shu, X., & Chen, Q. (2021). A Critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses. Journal of Fungi, 7(9), 719. https://doi.org/10.3390/jof7090719

48. Mahoney, A. K., Yin, C., & Hulbert, S. H. (2017). Community sructure, species variation, and potential functions of rhizosphere-associated bacteria of different winter wheat (Triticum aestivum) cultivars. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00132

49. Malinich, E. A., Wang, K., Mukherjee, P. K., Kolomiets, M., & Kenerley, C. M. (2019). Differential expression analysis of Trichoderma virens RNA reveals a dynamic transcriptome during colonization of Zea mays roots. BMC Genomics, 20(1), 280. https://doi.org/10.1186/s12864-019-5651-z

50. Morales-Cedeño, L. R., Orozco-Mosqueda, Ma. D. C., Loeza-Lara, P. D.,

51. Parra-Cota, F. I., De Los Santos-Villalobos, S., & Santoyo, G. (2021). Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and

52. future perspectives. Microbiological Research, 242, 126612. https://doi.org/10.1016/j.micres.2020.126612

53. Pandey, V., Ansari, M. W., Tula, S., Yadav, S., Sahoo, R. K., Shukla, N., Bains, G., Badal, S., Chandra, S., Gaur, A. K., Kumar, A., Shukla, A., Kumar, J., &

54. Tuteja, N. (2016). Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta, 243(5), 1251–1264. https://doi.org/10.1007/s00425-016-2482-x

55. Pankievicz, V. C. S., Camilios-Neto, D., Bonato, P., Balsanelli, E., Tadra-Sfeir, M. Z., Faoro, H., Chubatsu, L. S., Donatti, L., Wajnberg, G., Passetti, F., Monteiro, R. A., Pedrosa, F. O., & Souza, E. M. (2016). RNA-seq transcriptional profiling of Herbaspirillum seropedicae colonizing wheat (Triticum aestivum) roots. Plant Molecular Biology, 90(6), 589–603. https://doi.org/10.1007/s11103-016-0430-6

56. Plett, J. M., & Martin, F. M. (2018). Know your enemy, embrace your friend: Using omics to understand how plants respond differently to pathogenic

57. and mutualistic microorganisms. The Plant Journal, 93(4), 729–746. https://doi.org/10.1111/tpj.13802

58. Qin, S., Feng, W.-W., Zhang, Y.-J., Wang, T.-T., Xiong, Y.-W., & Xing, K. (2018). Diversity of Bacterial Microbiota of Coastal Halophyte Limonium sinense and Amelioration of Salinity Stress Damage by Symbiotic Plant

59. Growth-Promoting Actinobacterium Glutamicibacter halophytocola KLBMP 5180. Applied and Environmental Microbiology, 84(19), e01533-18. https://doi.org/10.1128/AEM.01533-18

60. Reinhold-Hurek, B., & Hurek, T. (2011). Living inside plants: Bacterial endophytes. Current Opinion in Plant Biology, 14(4), 435–443. https://doi.org/10.1016/j.pbi.2011.04.004

61. Rojas, E. C., Jensen, B., Jørgensen, H. J. L., Latz, M. A. C., Esteban, P., Ding, Y., & Collinge, D. B. (2020). Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biological Control, 144, 104222. https://doi.org/10.1016/j.biocontrol.2020.104222

62. Saini, P., Verma, A., Tiwari, H., Mishra, V., & Gautam, V. (2024). Omics-Based Approaches in Studying Fungal Endophytes and Their Associated Secondary Metabolites. In B. P. Singh, A. M. Abdel-Azeem, V. Gautam, G. Singh, & S. K. Singh (Eds.), Endophytic Fungi (pp. 209–227). Springer International Publishing. https://doi.org/10.1007/978-3-031-49112-2_10

63. Sánchez-Vallet, A., Mesters, J. R., & Thomma, B. P. H. J. (2015). The battle for chitin recognition in plant-microbe interactions. FEMS Microbiology Reviews, 39(2), 171–183. https://doi.org/10.1093/femsre/fuu003

64. Sánchez-Vallet, A., Saleem-Batcha, R., Kombrink, A., Hansen, G., Valkenburg, D.-J., Thomma, B. P., & Mesters, J. R. (2013). Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife, 2, e00790. https://doi.org/10.7554/eLife.00790

65. Santoyo, G., Moreno-Hagelsieb, G., Del Carmen Orozco-Mosqueda, Ma., &

66. Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92–99. https://doi.org/10.1016/j.micres.2015.11.008

67. Segmüller, N., Kokkelink, L., Giesbert, S., Odinius, D., Van Kan, J., & Tudzynski, P. (2008). NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Molecular Plant-Microbe Interactions®, 21(6), 808–819. https://doi.org/10.1094/MPMI-21-6-0808

68. Sowa, S. W., Gelderman, G., Leistra, A. N., Buvanendiran, A., Lipp, S., Pitaktong, A., Vakulskas, C. A., Romeo, T., Baldea, M., & Contreras, L. M. (2017). Integrative FourD omics approach profiles the target network of the carbon storage regulatory system. Nucleic Acids Research, gkx048. https://doi.org/10.1093/nar/gkx048

69. Straub, D., Yang, H., Liu, Y., Tsap, T., & Ludewig, U. (2013). Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30T. Journal of Experimental Botany, 64(14), 4603–4615. https://doi.org/10.1093/jxb/ert276

70. Sugawara, S., Mashiguchi, K., Tanaka, K., Hishiyama, S., Sakai, T., Hanada, K., Kinoshita-Tsujimura, K., Yu, H., Dai, X., Takebayashi, Y., Takeda-Kamiya, N., Kakimoto, T., Kawaide, H., Natsume, M., Estelle, M., Zhao, Y., Hayashi, K., Kamiya, Y., & Kasahara, H. (2015). Distinct characteristics of Indole-3-Acetic acid and phenylacetic acid, two common auxins in plants. Plant and Cell Physiology, 56(8), 1641–1654. https://doi.org/10.1093/pcp/pcv088

71. Sun, S., Sidhu, V., Rong, Y., & Zheng, Y. (2018). Pesticide pollution in agricultural soils and sustainable remediation methods: a review. Current Pollution Reports, 4(3), 240–250. https://doi.org/10.1007/s40726-018-0092-x

72. Syed Ab Rahman, S. F., Singh, E., Pieterse, C. M. J., & Schenk, P. M. (2018). Emerging microbial biocontrol strategies for plant pathogens. Plant Science, 267, 102–111. https://doi.org/10.1016/j.plantsci.2017.11.012

73. Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., Weyens, N.,

74. Barac, T., Vangronsveld, J., & Van Der Lelie, D. (2009). Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Applied and Environmental Microbiology, 75(3), 748–757. https://doi.org/10.1128/AEM.02239-08

75. Tao, Y., Jia, C., Jing, J., Zhang, J., Yu, P., He, M., Wu, J., Chen, L., & Zhao, E. (2021). Occurrence and dietary risk assessment of 37 pesticides in wheat fields in the suburbs of Beijing, China. Food Chemistry, 350, 129245. https://doi.org/10.1016/j.foodchem.2021.129245

76. Terblanche, J. S., Hoffmann, A. A., Mitchell, K. A., Rako, L., Le Roux, P. C., & Chown, S. L. (2011). Ecologically relevant measures of tolerance to potentially lethal temperatures. Journal of Experimental Biology, 214(22), 3713–3725. https://doi.org/10.1242/jeb.061283

77. Utturkar, S. M., Cude, W. N., Robeson, M. S., Yang, Z. K., Klingeman, D. M., Land, M. L., Allman, S. L., Lu, T.-Y. S., Brown, S. D., Schadt, C. W., Podar, M., Doktycz, M. J., & Pelletier, D. A. (2016). Enrichment of root endophytic bacteria from populus deltoides and single-cell-genomics analysis. Applied and Environmental Microbiology, 82(18), 5698–5708. https://doi.org/10.1128/AEM.01285-16

78. Vahabi, K., Sherameti, I., Bakshi, M., Mrozinska, A., Ludwig, A., & Oelmüller, R. (2015). Microarray analyses during early and later stages of the Arabidopsis/ Piriformospora indica interaction. Genomics Data, 6, 16–18. https://doi.org/10.1016/j.gdata.2015.07.019

79. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206(4), 1196–1206. https://doi.org/10.1111/nph.13312

80. Vibhuti, M., Kumar, A., Sheoran, N., Nadakkakath, A. V., & Eapen, S. J. (2017). Molecular basis of endophytic Bacillus megaterium-induced growth promotion in arabidopsis thaliana: revelation by microarray-based gene expression analysis. Journal of Plant Growth Regulation, 36(1), 118–130. https://doi.org/10.1007/s00344-016-9624-z

81. Ważny, R., Rozpądek, P., Domka, A., Jędrzejczyk, R. J., Nosek, M.,

82. Hubalewska-Mazgaj, M., Lichtscheidl, I., Kidd, P., & Turnau, K. (2021). The effect of endophytic fungi on growth and nickel accumulation in Noccaea hyperaccumulators. Science of The Total Environment, 768, 144666. https://doi.org/10.1016/j.scitotenv.2020.144666

83. Wei, W., Zhu, W., Cheng, J., Xie, J., Jiang, D., Li, G., Chen, W., & Fu, Y. (2016). Nox Complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Scientific Reports, 6(1). https://doi.org/10.1038/srep24325

84. Weilharter, A., Mitter, B., Shin, M. V., Chain, P. S. G., Nowak, J., & Sessitsch, A. (2011). Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans Strain PsJN. Journal of Bacteriology, 193(13), 3383–3384. https://doi.org/10.1128/JB.05055-11

85. Yan, Y., Yang, J., Dou, Y., Chen, M., Ping, S., Peng, J., Lu, W., Zhang, W., Yao, Z., Li, H., Liu, W., He, S., Geng, L., Zhang, X., Yang, F., Yu, H., Zhan, Y., Li, D., Lin, Z., … Jin, Q. (2008). Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proceedings of the National Academy of Sciences, 105(21), 7564–7569. https://doi.org/10.1073/pnas.0801093105

86. Yin, C., Mueth, N., Hulbert, S., Schlatter, D., Paulitz, T. C., Schroeder, K.,

87. Prescott, A., & Dhingra, A. (2017). Bacterial communities on wheat grown under long-term conventional tillage and no-till in the pacific northwest of the united states. Phytobiomes Journal, 1(2), 83–90. https://doi.org/10.1094/PBIOMES-09-16-0008-R

88. Zhang, W., Wang, J., Xu, L., Wang, A., Huang, L., Du, H., Qiu, L., & Oelmüller, R. (2018). Drought stress responses in maize are diminished by Piriformospora indica. Plant Signaling & Behavior, 13(1), e1414121. https://doi.org/10.1080/15592324.2017.1414121

89. Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.-L., Elliott, J., Ewert, F., Janssens, I. A., Li, T.,

90. Lin, E., Liu, Q., Martre, P., Müller, C., Peng, S., Peñuelas, J., Ruane, A. C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z., Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114(35), 9326–9331. https://doi.org/10.1073/pnas.1701762114

91. Zhou, J., Li, X., Huang, P.-W., & Dai, C.-C. (2018). Endophytism or saprophytism: Decoding the lifestyle transition of the generalist fungus

92. Phomopsis liquidambari. Microbiological Research, 206, 99–112. https://doi.org/10.1016/j.micres.2017.10.005


Рецензия

Для цитирования:


Просеков А.Ю. Применение методов omics в изучении эндофитных микроорганизмов: обзор предметного поля. FOOD METAENGINEERING. 2024;2(1). https://doi.org/10.37442/fme.2024.1.44

For citation:


Prosekov A.Yu. Application of omics methods to the study of endophytic microorganisms: Scoping Review. FOOD METAENGINEERING. 2024;2(1). (In Russ.) https://doi.org/10.37442/fme.2024.1.44

Просмотров: 222


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2949-6497 (Online)