Methods for Obtaining and Using Succinic Acid in the Food Industry: A Scoping Review
https://doi.org/10.37442/fme.2024.2.41
Abstract
Introduction: Succinic acid is the final metabolite of many microorganisms. It has antioxidant, tonic properties, and also takes part in the metabolic processes of a living organism. Its use in food formulations will help expand the range of functional food products aimed at improving metabolism.
Purpose: description of methods for obtaining and features of the use of succinic acid in the food industry for the production of functional foods and biologically active food additives.
Materials and Methods: Information search was carried out in the databases Scopus, Web of Science, PubMed, RISC for the period from 01/01/1994 to 03/01/2024. Marketing research reports on the use of succinic acid in the food industry for the period 2016-2023 were also analyzed. The review included review and empirical articles that met the selection criteria in English and Russian. This review of the subject field is based on the PRISMA-ScR protocol.
Results: Currently, succinic acid is produced by chemical or biotechnological methods. The most common method is the chemical method (paraffin oxidation, catalytic hydrogenation, maleic acid or maleic anhydride). There is also a biotechnological method based on the cultivation of microorganisms that produce succinic acid. Various organic substrates, including food industry waste, can be used to cultivate microorganisms. It has been shown that succinic acid is included in the list of safe food additives and is used in food production as an acidity regulator. However, due to the fact that it has proven biological effectiveness, succinic acid can be included in the formulations of various food products, thereby providing them with additional functional properties.
Conclusion: To introduce the biotechnological method into the real sector of the economy, it is necessary to solve a number of limiting factors. It has been established that succinic acid can be used not only as a traditional food additive (acidity regulator), but also as a dietary supplement. The volumes of production and demand for succinic acid are slowly but increasing, which indicates the need to introduce new technologies for the production of succinic acid in order to meet the demand for this product.
About the Authors
Olga Olegovna Babich BabichRussian Federation
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов
Olga Borisovna Kalashnikova
Russian Federation
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов
Elena Viktorovna Ulrich
Russian Federation
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов
Stanislav Alekseevich Sukhikh
Russian Federation
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов
References
1. Gozhenko, A. I., Dolomatov, S. I., Zubkova, L. P., Zubkova, Yu. V., & Dolomatova, E. A. (2004). The effect of taking succinic acid on the functional state of the kidneys in children exposed to chronic ionizing radiation. Nephrology, 8(1), 51-55. https://doi.org/10.24884/1561-6274-2004-8-1-51-55
2. Evgenevsky, A. A., Ryzhkova, G. F., Evgenevskaya, E. P., Vanina, N. V., Mikhailova, I. I., Denisova, A.V., & Yeryzhenskaya, N. F. (2013). The biological role and metabolic activity of succinic acid. Bulletin of the Kursk State Agricultural Academy, 9, 67-69.
3. Komarov, A. A., Engashev, S. V., Engasheva, E. S., Udavliev, D. I., Egorov, M. A., Usha, B. V., Selimov, R. N., & Glamazdin, I. G. (2021). Amoxicillin and succinic acid: Effective medicines to protect animal health (review). Storage and processing of agricultural raw materials, 4, 98-117. https://doi.org/10.36107/spfp.2021.259
4. Kosinets, V. A., Stolbitsky, V. V., & Shturich, I. P. (2012). Experience in the use of cytoflavin in sports nutrition. Clinical Medicine, 90 (7), 56-59.
5. Malashenkov, B. M. (2018). The amber industry of the Russian Federation and the world amber market. Public administration. Electronic Bulletin, 69, 103-126. https://doi.org/10.24411/2070-1381-2018-00059
6. Romanova, N. K. (2017). Succinates are promising additives in the technology of products from vegetable raw materials. Bulletin of Kazan Technological University, 20 (16), 128-132
7. Tabatorovich, A. N. & Reznichenko I. Yu. (2019). Development and evaluation of the quality of diabetic jelly marmalade "Karkade" enriched with succinic acid. Food Production Engineering and Technology, 49 (2), 320-329. doi: 10.21603/2074-9414-2019-2-320-329
8. Yakovleva, E. G., Anisko, R. V., & Gorshkov, G. I. (2015). Succinic acid is a natural adaptogen and immunostimulator. Bulletin of the Kursk State Agricultural Academy, 7, 164-167
9. Alexandri, M., Kachrimanidou, V., Papapostolou, H., Papadaki, A., & Kopsahelis, N. (2022). Sustainable Food Systems: The Case of Functional Compounds towards the Development of Clean Label Food Products. Foods (Basel, Switzerland), 11, 2796. https://doi.org/10.3390/foods11182796
10. Ahn, J. H., Seo, H., Park, W., Seok, J., Lee, J. A., Kim, W. J., ... & Lee, S. Y. (2020). Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase. Nature communications, 11(1), 1970. https://doi.org/10.1038/s41467-020-15839-z
11. Carvalho, M., Roca, C., & Reis, M. A. (2016). Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods. Bioresource Technology, 218, 491-497. https://doi.org/10.1016/j.biortech.2016.06.140
12. Chen, C., & Zheng, P. (2023). New Insights into the Biosynthesis of Succinic Acid by Actinobacillus succinogenes with the Help of Its Engineered Strains. Fermentation, 9(12), 1026. https://doi.org/10.3390/fermentation9121026
13. Chen, Y., Zhan, J., Zhang, P., Nie, S., Lu, H., Song, L., & Hu, Y. (2010). Preparation of intumescent flame retardant poly (butylene succinate) using fumed silica as synergistic agent. Industrial & Engineering Chemistry Research, 49(17), 8200-8208. https://doi.org/10.1021/ie100989j
14. Cheng, K. K., Zhao, X. B. J., Zeng, & Zhang J. A. (2012). Biotechnological production of succinic acid: current state and perspectives. Biofuels, Bioproducts and Biorefining, 6, 3. https://doi.org/10.1002/bbb.1327
15. Contreras-Ruiz, A., Alonso-del-Real, J., Barrio, E., & Querol, A. (2023). Saccharomyces cerevisiae wine strains show a wide range of competitive abilities and differential nutrient uptake behavior in co-culture with S. kudriavzevii. Food Microbiology, 114, 104276. https://doi.org/10.1016/j.fm.2023.104276.
16. Deng, W., Feng Y., Fu J., Guo H., Guo Y., Han B., Jiang Z., Kong L., Li C., Liu H., Nguyen P. T. T., Ren P., Wang F., Wang S., Wang Y., Wang Y., Wong S. S., Yan K., Yan N., Yang X., Zhang Y., Zhang Z., Zeng X. & Zhou H. (2023). Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy & Environment, 8, 1. https://doi.org/10.1016/j.gee.2022.07.003.
17. Ebrahimian, F., Khoshnevisan, B., Mohammadi, A., Karimi, K., & Birkved, M. (2023). A biorefinery platform to valorize organic fraction of municipal solid waste to biofuels: An early environmental sustainability guidance based on life cycle assessment. Energy Conversion and Management, 283, 116905. https://doi.org/10.1016/j.enconman.2023.116905
18. Escanciano, I. A., Wojtusik, M., Esteban, J., Ladero, M., & Santos, V. E. (2022). Modeling the succinic acid bioprocess: A review. Fermentation, 8(8), 368. https://doi.org/10.3390/fermentation8080368
19. Fardet A., & Rock E. (2020). Ultra-Processed Foods and Food System Sustainability: What Are the Links? Sustainability, 12(15), 6280. https://doi.org/10.3390/su12156280
20. Hariz, H. B., Zaidi, S. A. S., Luthfi, A. A. I., Bukhari, N. A., Sajab, M. S., Markom, M., ... & Abdul, P. M. (2023). Succinic Acid Production from Oil Palm Biomass: A Prospective Plastic Pollution Solution. Fermentation, 9(1), 46. https://doi.org/10.3390/fermentation9010046
21. He, Y., Huang, W., Zhang, C., Chen, L., Xu, R., Li, N., ... & Zhang, D. (2021). Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharmaceutica Sinica B, 11(5), 1098-1116. https://doi.org/10.1016/j.apsb.2020.10.007
22. Iragavarapu, G. P., Imam, S. S., Sarkar, O., Mohan, S. V., Chang, Y. C., Reddy, M. V., ... & Amradi, N. K. (2023). Bioprocessing of Waste for Renewable Chemicals and Fuels to Promote Bioeconomy. Energies, 16(9), 3873. https://doi.org/10.3390/en16093873
23. Jiang, H., Wang, S., Li, B., Feng, L., Zhai, L., Zhou, H., ... & Pan, J. (2022). Anaerobic digestion of organic fraction of municipal solid waste using a novel two-stage solid-liquid system. Journal of Cleaner Production, 370, 133521.. https://doi.org/10.1016/j.jclepro.2022.133521
24. Khoshnevisan, B., Tabatabaei, M., Tsapekos, P., Rafiee, S., Aghbashlo, M., Lindeneg, S., & Angelidaki, I. (2020). Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid. Renewable and Sustainable Energy Reviews, 117, 109493. https://doi.org/10.1016/j.rser.2019.109493.
25. Książek, E. (2023). Citric Acid: Properties, Microbial Production, and Applications in Industries. Molecules, 29 (1), 22. https://doi.org/10.3390/molecules29010022
26. Kumar, R., Basak, B., & Jeon, B. H. (2020). Sustainable production and purification of succinic acid: A review of membrane-integrated green approach. Journal of Cleaner Production, 277, 123954. https://doi.org/10.1016/j.jclepro.2020.123954
27. Lee, S. C., & Kim, H. C. (2011). Batch and continuous separation of acetic acid from succinic acid in a feed solution with high concentrations of carboxylic acids by emulsion liquid membranes. Journal of membrane science, 367(1-2), 190-196.
28. Li, C., Ong, K. L., Yang, X., & Lin, C. S. K. (2019). Bio-refinery of waste streams for green and efficient succinic acid production by engineered Yarrowia lipolytica without pH control. Chemical Engineering Journal, 371, 804-812. https://doi.org/10.1016/j.cej.2019.04.092.
29. Li, C., Ong, K. L., Cui, Z., Sang, Z., Li, X., Patria, R. D., ... & Lin, C. S. K. (2021). Promising advancement in fermentative succinic acid production by yeast hosts. Journal of hazardous materials, 401, 123414. https://doi.org/10.1016/j.jhazmat.2020.123414
30. Lieshchova, M. A., Bilan, M. V., Bohomaz, A. A., Tishkina, N. M., & Brygadyrenko V. V. (2020). Effect of succinic acid on the organism of mice and their intestinal microbiota against the background of excessive fat consumption. Regulatory Mechanisms in Biosystems, 11 (2), 153-161. doi: 10.15421/022023
31. Lino, F. A., Ismail, K. A., & Castañeda-Ayarza, J. A. (2023). Municipal solid waste treatment in Brazil: A comprehensive review. Energy Nexus, 100232 https://doi.org/10.1016/j.nexus.2023.100232.
32. Liu, X., Zhao, G., Sun, S., Fan, C., Feng, X., & Xiong, P. (2022). Biosynthetic pathway and metabolic engineering of succinic acid. Frontiers in Bioengineering and Biotechnology, 10, 843887. https://doi.org/10.3389/fbioe.2022.843887
33. Liu, J., Liu, J., Guo, L., Liu, J., Chen, X., Liu, L., & Gao, C. (2022). Advances in microbial synthesis of bioplastic monomers. In Advances in Applied Microbiology (Vol. 119, pp. 35-81). Academic Press. https://doi.org/10.1016/bs.aambs.2022.05.002.
34. Ma, J., Chen, Y., Zhu, Y., Ayed, C., Fan, Y., Chen, G., & Liu, Y. (2020). Quantitative analyses of the umami characteristics of disodium succinate in aqueous solution. Food chemistry, 316, 126336. https://doi.org/10.1016/j.foodchem.2020.126336
35. Mancini, E., Dickson, R., Fabbri, S., Udugama, I. A., Ullah, H. I., Vishwanath, S., ... & Mansouri, S. S. (2022). Economic and environmental analysis of bio-succinic acid production: From established processes to a new continuous fermentation approach with in-situ electrolytic extraction. Chemical Engineering Research and Design, 179, 401-414. https://doi.org/10.1016/j.cherd.2022.01.040
36. Marques, R. D. S., & Cooke, R. F. (2021). Effects of Ionophores on Ruminal Function of Beef Cattle. Animals, 11(10), 2871. https://doi.org/10.3390/ani11102871
37. Matthews, C., Crispie, F., Lewis, E., Reid, M., O'Toole, P. W., & Cotter, P. D. (2019). The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut microbes, 10(2), 115–132. https://doi.org/10.1080/19490976.2018.1505176
38. Omwene, P. I., Yağcıoğlu, M., Öcal-Sarihan, Z. B., Ertan, F., Keris-Sen, Ü. D., Karagunduz, A., & Keskinler, B. (2021). Batch fermentation of succinic acid from cheese whey by Actinobacillus succinogenes under variant medium composition. 3 Biotech, 11(8), 389. https://doi.org/10.1007/s13205-021-02939-w
39. Perez-Zabaleta, M. (2019). Metabolic engineering and cultivation strategies for recombinant production of (R)-3-hydroxybutyrate (Doctoral dissertation, KTH Royal Institute of Technology).
40. Prabhu, A. A., Ledesma-Amaro, R., Lin, C. S. K., Coulon, F., Thakur V. K., & Kumar, V. (2020). Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control. Biotechnol Biofuels, 13, 113. https://doi.org/10.1186/s13068-020-01747-3
41. Robertiello, A., Romano, I., Ventorino, V., Faraco, V., & Pepe, O. (2023). Enhancing Succinic Acid Production by Sequential Adaptation of Selected Basfia succiniciproducens Strains to Arundo donax Hydrolysate. Fermentation, 9(6), 573. https://doi.org/10.3390/fermentation9060573
42. Rossi, E., Becarelli, S., Pecorini, I., Di Gregorio, S., & Iannelli, R. (2022). Anaerobic digestion of the organic fraction of municipal solid waste in plug-flow reactors: focus on bacterial community metabolic pathways. Water, 14(2), 195.. https://doi.org/10.3390/w14020195
43. Sadare, O. O., Ejekwu, O., Moshokoa, M. F., Jimoh, M. O., & Daramola, M. O. (2021). Membrane purification techniques for recovery of succinic acid obtained from fermentation broth during bioconversion of lignocellulosic biomass: Current advances and future perspectives. Sustainability, 13(12), 6794. https://doi.org/10.3390/su13126794
44. Salma, A., Djelal, H., Abdallah, R., Fourcade, F., & Amrane, A. (2021). Platform molecule from sustainable raw materials; case study succinic acid. Brazilian Journal of Chemical Engineering, 38(2), 215-239. ff10.1007/s43153-021-00103-8ff.
45. Sapozhnikova, T. V., Sapozhnikov, K. V., Parfenov, S. A., Elkin, A. A., Rizakhanov, D. M., & Rizakhanov, O. A. (2022). Vegetative and mental status of patients with functional gastrointestinal diseases. Experimental and Clinical Gastroenterology, 198(2), 159–168. (In Russ.) DOI: 10.31146/1682-8658-ecg-198-2-159-168
46. Shi, Y., Pu, D., Zhou, X., & Zhang, Y. (2022). Recent Progress in the Study of Taste Characteristics and the Nutrition and Health Properties of Organic Acids in Foods. Foods, 11(21), 3408. https://doi.org/10.3390/foods11213408
47. Stylianou, E., Pateraki, C., Ladakis, D., Cruz-Fernández, M., Latorre-Sánchez, M., Coll, C., & Koutinas, A. (2020). Evaluation of organic fractions of municipal solid waste as renewable feedstock for succinic acid production. Biotechnology for biofuels, 13, 1-16. https://doi.org/10.1186/s13068-020-01708-w
48. Thuy, N. T. H., Kongkaew, A., Flood, A., & Boontawan, A. (2017). Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate. Bioresource technology, 233, 342-352. https://doi.org/10.1016/j.biortech.2017.02.114.
49. Tosato, M., Ciciarello, F., Zazzara, M. B., Pais, C., Savera, G., Picca, A., Galluzzo, V., Coelho-Júnior, H. J., Calvani, R., Marzetti, E., Landi, F., & Gemelli A. (2022). COVID-19 Post-Acute Care Team. Nutraceuticals and Dietary Supplements for Older Adults with Long COVID-19. Clinics in geriatric medicine, 38(3), 565–591. https://doi.org/10.1016/j.cger.2022.04.004
50. Ulloa-Murillo, L. M., Villegas, L. M., Rodríguez-Ortiz, A. R., Duque-Acevedo, M., & Cortés-García, F. J. (2022). Management of the organic fraction of municipal solid waste in the context of a sustainable and circular model: Analysis of trends in Latin America and the Caribbean. International Journal of Environmental Research and Public Health, 19(10), 6041. https://doi.org/10.3390/ijerph19106041
51. Wan, C., Li, Y., Shahbazi, A., & Xiu, S. (2008). Succinic acid production from cheese whey using Actinobacillus succinogenes 130 Z. In Biotechnology for Fuels and Chemicals: Proceedings of the Twenty-Ninth Symposium on Biotechnology for Fuels and Chemicals Held April 29–May 2, 2007, in Denver, Colorado (pp. 111-119). Humana Press.
52. Xu, Y., & Zhao, F. (2023). Impact of energy depletion, human development, and income distribution on natural resource sustainability. Resources policy, 83, 103531. https://doi.org/10.1016/j.resourpol.2023.103531
53. Yang, L., Henriksen, M. M., Hansen, R. S., Lübeck, M., Vang, J., Andersen, J. E., Bille, S., & Lübeck, P. S. (2020). Metabolic engineering of Aspergillus niger via ribonucleoprotein-based CRISPR-Cas9 system for succinic acid production from renewable biomass. Biotechnology for biofuels, 13(1), 206. https://doi.org/10.1186/s13068-020-01850-5
54. Zheng, P., Dong, J. J., Sun, Z. H., Ni, Y., & Fang, L. (2009). Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresource technology, 100(8), 2425-2429. https://doi.org/10.1016/j.biortech.2008.11.043
Supplementary files
![]() |
1. Титульный лист рукописи | |
Subject | янтарная кислота, клеточная инженерия, сукцинилирование, функциональные продукты питания, пищевые добавки, здоровье человека | |
Type | Исследовательские инструменты | |
Download
(16KB)
|
Indexing metadata ▾ |
![]() |
2. сопроводительное письмо к статье | |
Subject | янтарная кислота, клеточная инженерия, сукцинилирование, функциональные продукты питания, пищевые добавки, здоровье человека | |
Type | Исследовательские инструменты | |
Download
(220KB)
|
Indexing metadata ▾ |
Review
For citations:
Babich O.O., Kalashnikova O.B., Ulrich E.V., Sukhikh S.A. Methods for Obtaining and Using Succinic Acid in the Food Industry: A Scoping Review. FOOD METAENGINEERING. 2024;2(2). (In Russ.) https://doi.org/10.37442/fme.2024.2.41