Investigation of the low-temperature exposure effect on the water activity of food products
https://doi.org/10.37442/fme.2023.1.10
Abstract
Introduction: The activity of water is an integral characteristic of the moisture condition in a product, by which one can assess the correctness of various technological processes, as well as predict the shelf life of the product. Existing studies on the activity of water in food products were conducted mostly for the positive temperature range. Little attention was paid to the study of the effects of low-temperature exposure on water activity.
Purpose: The article is devoted to the study of water activity in food products at various temperatures. Such an approach will allow predicting the shelf life of food products and optimizing the development of methods for controlling the functional and technological characteristics of food raw materials.
Materials and Methods: The objects of research were: beef chilled according to GOST R 52427-2005, chilled pork, chilled mutton, fresh cucumbers, fresh carrots, fresh tomatoes, fresh parsley greens, dill greens, green onion greens. Two installations were used to analyze the water activity in the research objects: designed at the Kuzbass State Agricultural Academy, and the LabSwift-aw water activity analyzer. Experiments were conducted for fresh, chilled, and frozen products at various temperatures.
Results: A design of a homemade installation that can be used to measure water activity is presented. The accuracy of this installation's measurements is experimentally proven. An analysis of water activity in fresh, chilled, and frozen products has been conducted. The water activity of fresh products was within the range of 0.954-0.995. It was found that with the same moisture content, the water activity can vary slightly, which is due to the difference in the chemical composition of the product and the salt content. It was established that chilling products from 22 to 6°C leads to a decrease in water activity by an average of 2%. Freezing to a temperature of -5°C results in a further reduction of water activity by an average of 0.03 units. Lowering the freezing temperature from -5°C to -10°C, -20°C, -30°C, and -40°C results in a reduction of water activity by an average of 0.04, 0.07, 0.06, and 0.05 units, respectively. Based on experimental data, mathematical dependencies of water activity on the freezing temperature for all studied products were derived.
Conclusion: Water activity has important theoretical and practical significance, and the results of the research can be useful in predicting the shelf life of food products and developing methods to control the functional and technological characteristics of food raw materials.
References
1. Ермолаев, В. А., Шушпанников, А. Б. (2010). Исследование показателя активности воды сухих молочных продуктов. Техника и технология пищевых производств, 2(17), 84-88.
2. Макарова Г. В. (2018). Роль барьера "активность воды" в управлении безопасностью пищевых продуктов Актуальные вопросы совершенствования технологии производства и переработки продукции сельского хозяйства, 20, 224-227.
3. Марков Ю. Ф. (2020). Показатель активности воды и его применение при оптимизации процесса холодного копчения рыбы Технологии пищевой и перерабатывающей промышленности АПК – продукты здорового питания, 4, 160-164.
4. Остров, Н. (2021). Прогнозирование сроков годности мясопродуктов. Активность воды. Мясной ряд, 2(84), 48-49.
5. Сафонова, Ю. А., Жаркова, И. М., Баринов, А. С. (2017). Влияние активности воды на свойства сырья при хранении. Хлебопродукты, 12, 52-55.
6. Степаненко, Е. И., Нехамкин, Б. Л. (2017). Активность воды на страже качества рыбной продукции. Контроль качества продукции, 10, 50-53.
7.
8. Степаненко, Е. И., Нехамкин, Б. Л. (2020). Влияние активности воды на стабилизацию качества соленой атлантической сельди в процессе хранения. Труды АтлантНИРО, 41(9), 187-194.
9. Танаков, Н. Т., Улугбекова, А. У. (2021). Изучение активности воды яблок сортов Кыргызской и Зарубежной селекции при хранении в условиях Ошской области Наука. Образование. Техника, 1(70), 59-66.
10.
11. Эрлихман, В. Н., Фатыхов, Ю. А. (2018). Влияние связанной воды на ее активность при замораживании продуктов Научный журнал НИУ ИТМО. Серия: Процессы и аппараты пищевых производств, 4, 36-41.
12. Эрлихман, В. Н., Фатыхов, Ю. А. (2018). Методика расчета скорости усушки пищевого продукта в зависимости от активности воды в процессах холодильной технологии Вестник Международной академии холода, 4, 10-14.
13. Angamuthu, M., Shankar, V. K., & Murthy, S. N. (2018). Water activity and its significance in topical dosage forms. Journal of Pharmaceutical Sciences, 107(6), 1656-1666. https://doi.org/10.1016/j.xphs.2018.02.013
14. Chen, C. (2019). Relationship between Water Activity and Moisture Content in Floral Honey. Foods, 8(30). https://doi.org/10.3390/foods8010030
15. Leygonie, C., Britz, T. J., & Hoffman, L. C. (2012). Impact of freezing and thawing on the quality of meat: Review. Meat Science, 91, 93-98. https://doi.org/10.1016/j.meatsci.2012.01.013
16. Mathlouthi, M. (2001). Water content, water activity, water structure and the stability of foodstuffs. Food Control, 12(7), 409-417. https://doi.org/10.1016/S0956-7135(01)00032-9
17. Miyawaki, O. (2018). Water and freezing in food. Food Science and Technology Research, 24, 1-21. https://doi.org/10.3136/fstr.24.1
18. Morasi, R. M., Alonso, V. P. P., Silva, N. C. C., Rall, V. L. M., & Dantas, S. T. A. (2022). Salmonella spp. in low water activity food: Occurrence, survival mechanisms, and thermoresistance. Journal of Food Science, 87(6), 2310-2323. https://doi.org/10.1111/1750-3841.16152
19. Plotnikova, I. V., Zharkova, I. M., Magomedov, G. O., Magomedov, M. G., Khvostov, A. A., & Miroshnichenko, E. N. (2021). Forecasting and quality control of confectionery products with the use of “water activity” indicator. IOP Conference Series: Earth and Environmental Science. "International Conference on Production and Processing of Agricultural Raw Materials - Quality Management and Manufacturing Execution in Agricultural Processing" (vol. 640, 062003). IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/640/6/062003
20. Racchi I., Scaramuzza N., Hidalgo A., & Berni E. (2020). Combined effect of water activity and ph on the growth of food-related ascospore-forming molds. Annals of Microbiology, 70(1), 1-9. https://doi.org/10.1186/s13213-020-01612-6
21. Sandulachi, E. (2012). Water activity concept and its role in food preservation. Meridian Engineering, 4, 40-48.
22. Silva, S. H., Lago, A. M. T., Rivera, F. P., Prado, M. E. T., Braga, R. A., & De resende, Ja. V. (2018). Measurement of water activities of foods at different temperatures using biospeckle laser. Journal of Food Measurement and Characterization, 12(3), 2230-2239. https://doi.org/10.1007/s11694-018-9839-8
23. Tarafdar, A., Shahi, N. Ch., Singh, A., & Sirohi, R. (2018). Artificial neural network modeling of water activity: A low energy approach to freeze drying. Food and Bioprocess Technology, 11(1), 164-171. https://doi.org/10.1016/S0167-7012(00)00201-3
24. Yang, R., Guan, J., Sun, S., Sablani, S.S., & Tang, J. (2020). Understanding water activity change in oil with temperature. Current Research in Food Science, 14(3), 158-165. https://doi.org/10.1016/j.crfs.2020.04.001
Review
For citations:
Ermolaev V.A. Investigation of the low-temperature exposure effect on the water activity of food products. FOOD METAENGINEERING. 2023;1(1). (In Russ.) https://doi.org/10.37442/fme.2023.1.10