Preview

FOOD METAENGINEERING

Advanced search

Formation of biosafety and greening of the production environment of food production with application of anolyte

https://doi.org/10.37442/fme.2023.2.8

Abstract

Introduction: Electrochemically activated aqueous solutions are widely used in medical institutions, animal husbandry, as well as in large food processing facilities. This work presents a literature review on the use of electrochemically activated solutions in the food industry. These solutions can be used as a safe means for processing food raw materials, equipment, food containers, and surfaces of foodservice facilities. The question of using activated aqueous solutions in relation to foodservice establishments is not fully explored in the scientific literature.

Purpose: The aim of the research is to study the possibility of using electrochemically activated aqueous solutions as safe and environmentally friendly means for treating objects in the production environment to eliminate the risk of contamination by microorganisms.

Materials and Methods: Surfaces of the production environment were selected as the objects of study, including a table, scales, a knife, a slicer, and a gastronorm container. Sweet pepper fruits of the "Avangard" variety were chosen as non-heat-treated food products. An electrochemically activated aqueous solution of chlorine dioxide and hydrogen peroxide compounds with a concentration of active substances of 0.5 ± 0.05 g/L (Anolyte ANK-SUPER) was chosen as the treatment agent. Microbiological studies were conducted using XLD Agar medium and petrifilms. To assess the effectiveness of treatment, microbiological studies were conducted with the determination of Coliform Bacteria (BGKP) and Mesophilic Aerobic and Facultative Anaerobic Microorganisms (KMAFAnM). To achieve acceptable microorganism counts for counting purposes, the tenfold dilution method was used. The residual active chlorine concentration was determined using the iodometric method to determine the actual concentrations of working solutions.

Results: The use of undiluted disinfectant with a concentration of 0.5 ± 0.05 g/L confirmed the effectiveness of electrochemically activated solutions against Coliform Bacteria (BGKP), with a significant reduction in the content of Mesophilic Aerobic and Facultative Anaerobic Microorganisms (KMAFAnM) compared to control samples. However, the results of the experiments suggest that parameter selection is required, specifically the concentration of the disinfectant and the duration of treatment depending on the object. The data obtained from preliminary experiments characterize the potential use of reduced concentrations of the working solution (no less than 0.05 ± 0.005 g/L of active chlorine), but do not confirm the possibility of full-scale application of the used concentrations due to the lack of quantitative data on the degree of contamination of the initial surfaces. The possibility of using the solutions as a single agent for treating both working surfaces and fruit and vegetable products has been demonstrated.

Conclusion: As a result of the conducted research, the effectiveness of disinfectants based on electrochemically activated solutions against Escherichia coli bacteria (BGKP) and the reduction of Mesophilic Aerobic and Facultative Anaerobic Microorganisms (KMAFAnM) has been confirmed. In addition, among the possible prospects for research, determining the minimum concentrations and contact times for achieving stable disinfecting effects can be mentioned. The results obtained showed that the use of electrochemically activated solutions ensured the biological safety of treated production objects and surfaces of thermally untreated food products. An alternative method of using electrochemically activated solutions as a universal environmentally friendly agent has been proposed. Thus, in foodservice establishments, an effective "green" technology based on electrochemically activated solutions can be implemented.

About the Authors

Alexander L. Kuznetsov
345 Mechanical plant
Russian Federation


Anastasia S. Kapranova
Russian Biotechnological University


Evgeny Y. Knyazev
Russian Biotechnological University
Russian Federation


Oleg A. Suvorov
Russian Biotechnological University
Russian Federation


References

1. Аронов, В.М. (2012). Обоснование комплексного применения электрохимически активированного раствора для дезинфекции и дезинсекции в птицеводстве. Ветеринария, 1, 17-20.

2. Бахир, В.М. (2014). Электрохимическая активация. Изобретения, техника, технология. ВИВА – СТАР.

3. Бывальцев, А.И., Магомедов, Г.О., & Бывальцев, В.А. (2008). Свойства активированной воды и ее использование в пищевой промышленности. Хранение и переработка сельскохозяйственного сырья, 7, 49-53.

4. Гомбоев, Д. Д., & Данилова, А. А. (2008). Пребиотическое действие катодной фракции электрохимически активированных растворов поваренной соли при экспериментальном дисбиозе. Сибирский вестник сельскохозяйственной науки, 4(184), 85-90.

5. Горбачева, М. В., Тарасов, В. Е., Сапожникова, А. И., & Калманович, С. А. (2020) Вытапливание жира в электрохимически активированной водной среде: технологические аспекты, безопасность и качество готового продукта. Вестник Воронежского государственного университета инженерных технологий, 82(1), 169-177.

6. Еканина, С.В., Королёва, Т.А., Помазанов, В.В., Марданлы, С.Г., Киселева, В.А., Рогожникова, Е.П., & Николаева, Н.П. (2021). Исследование влияния электрохимического воздействия на воду и водные субстанции биологически активных веществ на их противовирусные свойства. Известия ГГТУ. Медицина, фармация, 1, 17-26.

7. Маркова, В.А., Попова, А.И., & Суворов, О.А. (2020). Высокоэффективные электрохимические технологии повышения безопасности продуктов животного происхождения. Научные исследования XXI века, 6(8), 36-44.

8. Миклис, Н. И., & Бурак, И. И. (2022). Эффективность профилактической аэрозольной дезинфекции помещений анолитом нейтральным. Медицинский журнал, 3(81), 10-17.

9. Некрасова, Л. П., Михайлова, Р. И., & Рыжова, И. Н. (2020). Влияние электрохимической обработки на физико-химические свойства воды. Гигиена и санитария, 99(9), 904-910.

10. Погорелов, А.Г., Кузнецов, А.Л., Погорелова, В.Н., Суворов, О.А., Панаит, А.И., & Погорелова, М.А. (2019) Разрушение бактериальной пленки электрохимически активированным водным раствором. Биофизика, 4, 734-739. https://doi.org/10.1134/S0006302919040124

11. Погорелова, М.А., Суворов, О.А., Кузнецов, А.Л., Панаит, А.И., & Погорелов, А.Г. (2020). Актуальные проблемы безопасного обеззараживания гидропонных субстратов агропромышленных комплексов. Вестник Южно-Уральского государственного университета. Серия: Пищевые и биотехнологии, 8(1), 12-21.

12. Попова, А.И., Панаит, А.И., Суворов, О.А., Кузнецов, А.Л., Ипатова, Л.Г., & Погорелов, А.Г. (2021). Использование электрохимически активированной воды для повышения биологической безопасности в прикладной биотехнологии. Вестник Южно-Уральского государственного университета. Серия: Пищевые и биотехнологии, 9(3), 5-13.

13. Прокопенко, А.А., Ваннер, Н.Э., Кущ, И.В., Филипенкова, Г.В., Новикова, С.И., & Бахир В.М. (2020). Технология дезинфекции ветсанобъектов направленными аэрозолями Анолита Перокс, Российский журнал Проблемы ветеринарной санитарии, гигиены и экологии, 3(35), 322-327.

14. Сокол, Н.В., & Атрощенко, Е.А. (2019). Исследование влияния электрохимически активированной воды на реологические свойства теста и качество хлеба. Новые технологии, (1), 170-177.

15. Alexander, E. M. C., Brandao, T. R. S., & Silva, C. L. M. (2012). Assessment of the impact of hydrogen peroxide solutions on microbial loads and quality factors of red bell peppers, strawberries and watercress. Food Control, 27, 362-368.

16. Chen, B.K., & Wang, C.K. (2022). Electrolyzed Water and Its Pharmacological Activities: A Mini-Review. Molecules, 27(4). https://doi.org/10.3390/molecules27041222

17. Gellynck, X., Messens, W., Halet, D., Grijspeerdt, K., Hartnett, E., & Viaene, J. (2008). Economics of reducing Campylobacter at different levels within the Belgian poultry meat chain. Journal of food protection, 71(3), 479-485.

18. Han, R., Liao, X., Ai, C., Ding, T., & Wang, J. (2021). Sequential treatment with slightly acidic electrolyzed water (SAEW) and UVC light-emitting diodes (UVC-LEDs) for decontamination of Salmonella typhimurium on lettuce. Food Control, 123, 107738.

19. Huang, Y. X., & Chen, H. Q. (2011). Effect of organic acids, hydrogen peroxide and mild heat on inactivation of Escherichia coli O157: H7 on baby spinach. Food Control, 22, 1178-1183.

20. Jiménez-Pichardo, R., Regalado, C., Castaño-Tostado, E., & Santos-Cruz, J. (2016). Evaluation of electrolyzed water as cleaning and disinfection agent on stainless steel as a model surface in the dairy industry. Food Control, 60, 320-328. https://doi.org/60. 320-328. 10.1016/j.foodcont.2015.08.011

21. Kim, C., & Hung, Y.C. (2012). Inactivation of E.coli O157:H7 on Blueberries by Electrolyzed Water, Ultraviolet Light, and Ozone. Journal of Food Science, 77(4), M206 – M211. https://doi.org/10.1111/j.1750 –3841.2011.02595.x

22. Kitanovski, V.D., Vlahova-Vangelova, D.B., Dragoev, S.G., Nikolov, H.N., & Desislav, K.B. (2018) Effect of electrochemically activated anolyte on the shelf-life of cold stored rainbow trout. Food Science and Applied Biotechnology, 1(1), 1-10. https://doi.org/10.30721/fsab 2018.v1.i1

23. Liu, Q., Chen, L., Laserna, A.K., He, Y., Feng, X., & Yang, H. (2020). Synergistic action of electrolyzed water and mild heat for enhanced microbial inactivation of Escherichia coli O157: H7 revealed by metabolomics analysis. Food Control, 110, 107026.

24. Pshenko, E.B., Shestakov, I.Ya., & Shestakov, V.I. (2019). Features of electroactivated water production at a coaxial electrode location. Siberian Journal of Science and Technology, 20(1), С. 119-125.

25. Savchenko, A.A., Borisenko, A.A., Borisenko, L.A., Borisenko, A.A., Razinkova, V.G., & Trunova, E.D. (2021). Meat products for the fudnet market. Modern Science and Innovations, 4(36), 114-123.

26. Stefanello, A., Magrini, L.N., Lemos, J.G., Garcia, M.V., Bernardi, A.O., Cichoski, A.J., & Copetti, M.V. (2020). Comparison of electrolized water and multiple chemical sanitizer action against heat-resistant molds (HRM). International Journal of Food Microbiol, 335, 108856.

27. Suvorov, O. A. (2018). Electrochemical and electrostatic decomposition technologies as a means of improving the efficiency and safety of agricultural and water technologies. International Journal of Pharmaceutical Research and Allied Sciences, 7(2), 43-52.

28. Tenzin, S., Ogunniyi, A.D., Khazandi, M., Ferro, S., Bartsch, J., & Crabb, S. (2019). Decontamination of aerosolised bacteria from a pig farm environment using a pH neutral electrochemically activated solution (Ecas4 anolyte). PLOS ONE, 14(9), e0222765. https://doi.org/10.1371/journal.pone.0222765

29. Zang, Y.T., Bing, S., Li Y.J., Shu, D.Q., Huang, A.M., & Wu, H.X. (2019). Efficacy of slightly acidic electrolyzed water on the microbial safety and shelf life of shelled eggs. Poultry Science, 98(11), 5932–9. https://doi.org/10.3382/ps/pez373


Review

For citations:


Kuznetsov A.L., Kapranova A.S., Knyazev E.Y., Suvorov O.A. Formation of biosafety and greening of the production environment of food production with application of anolyte. FOOD METAENGINEERING. 2023;1(2). (In Russ.) https://doi.org/10.37442/fme.2023.2.8

Views: 255


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-6497 (Online)