Risk assessment of the use of additional gas-aromatic culture Leuconostoc in the composition of multispecies bacterial starters for cheese making
https://doi.org/10.37442/fme.2025.3.82
Abstract
Introduction. The key factor determining the quality of cheeses is the balance of the starter microflora composition; the variability of the microorganism ratio can significantly affect the organoleptic profile of the product. An imbalance towards the predominance of leuconostocs over diacetyl lactococci can provoke defects: lack of a pattern, uncontrolled gas formation, taste defects. However, clear criteria for the optimal ratio of gas- and aroma-forming microorganisms have not yet been developed, which complicates the standardization of technological processes for the production of cheeses.
Objective. Establishing the influence of varying the ratio of Lc. lactis subsp. lactis biovar diacetylactis and Leuconostoc in the composition of a polyspecies starter culture on the formation of the organoleptic profile of semi-hard cheeses, and determining the zone of optimal concentrations that minimizes the risks of defects.
Materials and methods. The objects of the research were monospecific bacterial starters (Lc. lactis subsp. lactis, Lc. cremoris, Lc. lactis subsp. lactis biovar diacetylactis, Leuconostoc subsp.); Dutch cheese after pressing, during maturation and at the stage of conditioned maturity. The mass fraction of total and water-soluble protein was measured by the Kjeldahl method. The degree of proteolysis was estimated by the ratio of water-soluble protein to total protein. The molecular weight distribution of soluble nitrogen compounds in the aqueous extract was determined by gel filtration. The mass fraction of lactose, galactose, glucose and lactic acid was determined using a capillary electrophoresis system. The flavor profile of cheeses was determined by the content of volatile aroma-forming substances in the vapor phase of cheese of conditioned maturity.
Results. The use of Leuconostoc subsp. culture slows down the intensity of glycolysis at the production stage and proteolysis during the ripening process, and also reduces the total amount of volatile flavor and aroma substances and their diversity in cheeses of conditioned maturity, while increasing the amount of low-molecular peptides and amino acids in cheeses aged 60 days.
Conclusions. It has been established that when introducing Leuconostoc subsp. in the composition of the polyspecies bacterial concentrated starter culture more than 20.0%, there are risks of deterioration of organoleptic indicators such as insufficient expression of cheese taste and aroma, smearing consistency, the appearance of a nest-like pattern and small cracks up to 15 mm and, as a consequence, a decrease in the grade of cheeses based on the overall score. The obtained results can be used by biofactories for scientifically based design of multispecies bacterial concentrated starters for cheese making.
About the Authors
Galina M. SviridenkoDoctor of Technical Sciences, Chief Researcher in the Microbiological Research Department of Milk and Dairy Products
Denis S. Mamykin
Russian Federation
Junior Researcher in the Department of Microbiological Research of Milk and Dairy Products
Olga M. Shukhalova
Candidate of Technical Sciences, Head of Microbiological Research Department
References
1. Баранова, И. В., & Голова Е.Е. (2021). Российский рынок сыров в условиях пандемии COVID-19: состояние и перспективы развития. Фундаментальные исследования, (11), 32-38. https://doi.org/10.17513/fr.43118
2. Зипаев, Д.В., & Красникова, Л.В. (2019). Биотехнология заквасок для молочной промышленности, культивирование микроорганизмов. Молочная промышленность, (8), 32-34.
3. Мамыкин, Д. С. (2025). Разработка поливидовых бактериальных заквасок для технологии полутвердых сыров [Кандидатская диссертация, ФГБНУ «ФНЦ пищевых систем им. В.М. Горбатова» РАН]. Российская государственная библиотека. https://viewer.rsl.ru/ru/rsl01013696477
4. Решеткина, Ю. В., Шатова, А. В., & Столярова, О. А. (2023). Основные направления повышения экономической эффективности функционирования молочнопродуктового подкомплекса региона. Вестник Мичуринского государственного аграрного университета, 72(1), 147-151.
5. Свириденко, Г.М., Мордвинова, В. А., Шухалова, О. М., & Мамыкин Д. С. (2023). Биотехнологические подходы улучшения органолептических характеристик полутвердых сыров с низкой температурой второго нагревания. Пищевая промышленность, (2), 56-60. https://doi.org/10.52653/PPI.2023.2.2.013
6. Сорокина, Н. П., Кураева, Е. В., & Шпак, А.В. (2021). Состав и свойства заквасочной микрофлоры для полутвердых сыров. Сыроделие и маслоделие, (3), 42-46. https://doi.org/10.31515/2073-4018-2021-3-42-46
7. Сурай, Н. М., Михалев, А. П., Столярова, А. Н., & Чернухина Г.Н. (2024). Рынок сыра и сырных продуктов на примере регионов-лидеров центрального федерального округа России. Сыроделие и маслоделие, (2), 14-23.
8. https://doi.org/ 10.21603/2073-4018-2024-2-4
9. Сурай, Н. М., Таточенко, А. Л., Терехова, А. А., Михалев, А. П., & Корнева, Г. В. (2024). Регионы-лидеры сыроделия: создание собственных сырных брендов и их трансформация в бренды территорий. Сыроделие и маслоделие, (1), 10-25. https://doi.org/10.21603/2073-4018-2024-1-2
10. Abrar, N. A.-H., & Nidhal, M. S. A.-J. (2024). Biochemical and genetic identification of two local diacetyl producer bacterial isolates: Biochemical and genetic identification of two local diacetyl producer bacterial isolates. Iraqi Journal of Market Research and Consumer Protection, 16(2), 172-187. https://doi.org/10.28936/jmracpc16.2.2024.(15)
11. Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J. C., Gerds, M. L., Hammes, W. P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., Powell, I. B., Prajapati, J. B., Seto, Y., E. T. Schure, Boven, A. V., Vankerckhoven, V., Zgoda, A., Tuijtelaars, S., & Hansen, E. B. (2012). Food fermentations: Microorganisms with technological beneficial use. International journal of food microbiology, 154(3), 87-97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030
12. Decadt, H., & Vuyst, L. (2023). Insights into the microbiota and defects of present-day Gouda cheese productions. Current Opinion in Food Science, 52, 101044. https://doi.org/10.1016/j.cofs.2023.101044
13. Endo, A., Maeno, S., & Liu, S. Q. (2021). Lactic acid bacteria: Leuconostoc spp. In Encyclopedia of Dairy Sciences: Third edition (Vol. 4, pp. 226-232). Elsevier.
14. Fox, P. F., Guinee, T. P., Cogan, T. M., & McSweeney, P. L. H. (2017). Biochemistry of cheese ripening, Fundamentals of Cheese Science (pp. 391–442). Springer. https://doi.org/10.1007/978-1-4899-7681-9_12
15. Fusieger, A., Martins, M. C. F., de Freitas, R., Nero, L. A., & de Carvalho, A. F. (2020). Technological properties of Lactococcus lactis subsp. lactis bv. diacetylactis obtained from dairy and non-dairy niches. Brazilian Journal of Microbiology, 51, 313–321. https://doi.org/10.1007/s42770-019-00182-3
16. Fusieger, A., Perin, L. M., Teixeira, C. G. Carvalho, A. F., & Nero, L. A. (2020). The ability of Lactococcus lactis subsp. lactis bv. diacetylactis strains in producing nisin. Antonie van Leeuwenhoek, 113(5), 651–662. https://doi.org/10.1007/s10482-019-01373-6
17. Garbowska, M., Pluta, A., & Berthold-Pluta, A. (2020). Proteolytic and ACE-inhibitory activities of Dutch-type cheese models prepared with different strains of Lactococcus lactis. Food Bioscience, 35, 100604. https://doi.org/10.1016/j.fbio.2020.100604
18. Garcia-Quintans, N., Repizo, G., Martin, M., Magni, C., & Lopez, P. (2008). Activation of the diacetyl/acetoin pathway in Lactococcus lactis subsp. lactis bv. diacetylactis CRL264 by acidic growth. Applied and Environmental Microbiology, 74(7). 1988-1996. https://doi.org/10.1128/AEM.01851-07
19. Hemme, D. (2012). Leuconostoc and its use in dairy technology. Handbook of Animal-Based Fermented Food and Beverage Technology, 2nd ed.; Yui, Y.H., Ed, 73-107. https://doi.org/10.1201/b12084
20. Kelleher, P., Bottacini, F., Mahony, J., Kilcawley, K. N., & Sinderen, D. (2017). Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation. BMC Genomics, 18, 267. https://doi.org/10.1186/s12864-017-3650-5
21. Kihal, M., Prevost, H., Henni, D. E., Benmechernene, Z., & Diviès, C. (2007). Carbon dioxide production by Leuconostoc mesenteroides grown in single and mixed culture with Lactococcus lactis in skimmed milk. World Journal of Dairy and Food Sciences, 2(2), 62–68.
22. Kochetkova, T. V., Grabarnik, I. P., Klyukina, A. A., Zayulina, K. S., Gavirova, L. A., Shcherbakova, P. A., Kachmazov, G. S., Shestakov, A. I., Kublanov, I. V., & Elcheninov, A. G. (2023). The bacterial microbiota of artisanal cheeses from the Northern Caucasus. Fermentation, 9(8), 719. https://doi.org/10.3390/fermentation9080719
23. Kondrotiene, K., Zavistanaviciute, P., Aksomaitiene, J., Novoslavskij, A., & Malakauskas, M. (2024). Lactococcus lactis in dairy Fermentation—health-promoting and probiotic properties. Fermentation, 10(1), 16. https://doi.org/10.3390/fermentation10010016
24. Kuchroo, C.N., & Fox, P.F. (1982). Soluble nitrogen in Cheddar cheese: Comparison of extraction procedures. Milchwissenschaft, 37(6), 331–335.
25. Laranjo, M., & Potes, M. E. (2022). Traditional Mediterranean cheeses: Lactic acid bacteria populations and functional traits. In Lactic Acid Bacteria in Food Biotechnology (pp. 97-124). Elsevier. https://doi.org/10.1016/B978-0-323-89875-1.00011-0
26. Lee, S., Heo, S., Lee, G., Moon, Y., Kim, M., Kwak, M.-S., & Jeong, D.-W. (2024). Antibiotic susceptibility and technological properties of Leuconostoc citreum for selecting starter candidates. Microorganisms, 12(12), 2636. https://doi.org/10.3390/microorganisms12122636
27. Manno, M. T., Zuljan, F., Alarcоn, S., Esteban, L., Blancato, V., Espariz, M., & Magni, C. (2018). Genetic and phenotypic features defining industrial relevant Lactococcus lactis, L. cremoris and L. lactis biovar. diacetylactis strains. Journal of Biotechnology, 282, 25-31. https://doi.org/10.1016/j.jbiotec.2018.06.345
28. Mastrigt, O., Egas, R. A., Abee, T., & Smid, E. J. (2019). Aroma formation in retentostat co-cultures of Lactococcus lactis and Leuconostoc mesenteroides. Food Microbiology, 82, 151–159. https://doi.org/10.1016/j.fm.2019.01.016
29. Pedersen, T. B., Ristagno, D., McSweeney, P. L. H., Vogensen, F. K., & Ardо, Y. (2013). Potential impact on cheese flavour of heterofermentative bacteria from starter cultures. International Dairy Journal, 33(2), 112-119. https://doi.org/10.1016/j.idairyj.2013.03.003
30. Pedersen, T.B., Vogensen, F. K., & Ardö, Y. (2016). Effect of heterofermentative lactic acid bacteria of DL-starters in initial ripening of semi-hard cheese. International Dairy Journal, 57, 72–79. https://doi.org/10.1016/j.idairyj.2016.02.041
31. Psomas, E., Sakaridis, I., Boukouvala, E., Karatzia, M.-A., Ekateriniadou, L. V., & Samouris, G. (2023) Indigenous lactic acid bacteria isolated from raw Graviera cheese and evaluation of their most important technological properties. Foods, 12(2), 370. https://doi.org/10.3390/foods12020370
32. Sadi, F., Zaouadi, N., Hallouz, F., Bouras, A. D., Bensehaila, S., Mosbahi, W., & Ouadjene, H. (2021). Elaboration of a semi-hard cheese, Gouda type, with autochthonous strains and analysis of its physicochemical and sensory composition. Indian Journal of Science and Technology, 14(47), 3425-3432. https://doi.org/10.17485/IJST/v14i47.1565
33. Silva, L. F., Sunakozawa, T. N., Monteiro, D. A., Casella, T., Conti, A. C., Todorov, S. D., & Barretto Penna, A. L. (2023). Potential of cheese-associated lactic acid bacteria to metabolize citrate and produce organic acids and acetoin. Metabolites, 13(11), 1134. https://doi.org/10.3390/metabo13111134
34. Sviridenko, G. M., Shukhalova, O. M., Vakhrusheva, D. S., & Mamykin, D. S. (2024). Formation of cheese pattern when using monospecies cultures. Food Systems, 7(2), 276-281. https://doi.org/10.21323/2618-9771-2024-7-2-276-281
35. Wang, S., Chen, P., & Dang, H. (2019). Lactic acid bacteria and γ-aminobutyric acid and diacetyl. Lactic Acid Bacteria: Bioengineering and Industrial Applications (pp. 1-19). Springer https://doi.org/10.1007/978-981-13-7283-4_1
Supplementary files
Review
For citations:
Sviridenko G.M., Mamykin D.S., Shukhalova O.M. Risk assessment of the use of additional gas-aromatic culture Leuconostoc in the composition of multispecies bacterial starters for cheese making. FOOD METAENGINEERING. 2025;3(3). https://doi.org/10.37442/fme.2025.3.82