Preview

FOOD METAENGINEERING

Advanced search

Mechanisms of Enhancing Bacteriocin Synthesis by Members of the Lactobacillaceae

https://doi.org/10.37442/fme.2025.2.81

Abstract

Background: Bacteriocins produced by lactic acid bacteria (LAB) are natural antimicrobial peptides capable of effectively inhibiting the growth of pathogenic and antibiotic-resistant microorganisms. Their application in the food, medical, and biotechnological industries requires stable and high-yield production. Enhancing the productivity of producer strains is a key factor for expanding the industrial use of bacteriocins.

Purpose: A comparative analysis of biochemical, technological, and genetic factors affecting bacteriocin yield in members of the Lactobacillaceae family, with a focus on practical strategies to enhance their synthesis.

Manerials and Methods: A systematic literature review was conducted using the PRISMA protocol, covering publications from 2015–2025. The study analyzed the effects of cultivation conditions (pH, temperature, medium composition, agitation rate), carbon and nitrogen sources, and interspecies microbial interactions. Special attention was given to genetic engineering, including regulated expression systems and CRISPR-Cas9. Co-culturing methods and quorum-sensing inducers were also evaluated.

Results: Optimization of the growth medium, selection of carbohydrate and nitrogen supplements, and the use of biological inducers (PlnA, AI-2) were found to increase bacteriocin yield by 30–70%. Co-cultivation with Bacillus subtilis enhanced the expression of gene clusters regulating plantaricin synthesis. Heterologous expression using nisin-based systems enabled the production of active PlnJ and PlnK peptides with pronounced antimicrobial activity. Analysis of Lactiplantibacillus plantarum strains revealed that maximum cell density, achieved between 28 and 34 hours, correlated with peak bacteriocin production. Genetic engineering technologies, particularly CRISPR-Cas9, demonstrated high potential for improving production strains.

Conclusion: The findings indicate that a combined approach can significantly increase bacteriocin yields. A rational strategy, tailored to strain characteristics, production goals, and technical feasibility, ensures efficient scalability without increasing production costs.

About the Authors

I. R. Sokolov
Russian Biotechnological University
Russian Federation


V. M. Nsanova
Russian Biotechnological University
Russian Federation


V. M. Vinogradov
Russian Biotechnological University
Russian Federation


M. S. Kanochkina
Russian Biotechnological University
Russian Federation


References

1. • Aasen, I. M., et al. (2000). Influence of nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei. Applied Microbiology and Biotechnology, 53(2), 159–166. DOI:10.1007/s002530050003

2. • Abanoz, H. S., Kunduhoglu, B. (2021). Antimicrobial activity of bacteriocins against food pathogens. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3315–3337. DOI:10.1111/1541-4337.12769

3. • Abo-Amer, A. E. (2011). Optimization of bacteriocin production by Lactobacillus acidophilus AA11, a strain isolated from Egyptian cheese. Annals of Microbiology, 61(3), 445–452. DOI:10.1007/s13213-010-0157-6

4. • Alvarez-Sieiro, P., et al. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology and Biotechnology, 100(7), 2939–2951. DOI:10.1007/s00253-016-7343-9

5. • Anastasiadou, S., et al. (2008). Growth and metabolism of a meat isolated strain of Pediococcus pentosaceus in submerged fermentation. Enzyme and Microbial Technology, 43(6), 448–454. DOI:10.1016/j.enzmictec.2008.05.007

6. • Anthony, T., et al. (2009). Influence of medium and fermentation conditions on bacteriocin production by Bacillus licheniformis AnBa9. Bioresource Technology, 100(2), 872–877. DOI:10.1016/j.biortech.2008.07.027

7. • Balciunas, E. M., et al. (2023). Novel bacteriocins from Enterococcus spp.: biotechnological potential. Biotechnology Letters, 45(2), 189–201. DOI:10.1007/s10529-022-03327-9

8. • Bharti, V., et al. (2015). Bacteriocin: A novel approach for preservation of food. International Journal of Pharmacy and Pharmaceutical Sciences, 7(9), 1–10.

9. • Cabo, M. L., et al. (2001). Effects of aeration and pH gradient on nisin production. Enzyme and Microbial Technology, 29(4–5), 264–273. DOI:10.1016/S0141-0229(01)00378-7

10. • Cheigh, C.-I., et al. (2002). Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164. Journal of Biotechnology, 95(3), 225–235. DOI:10.1016/S0168-1656(02)00010-X

11. • Daba, H., et al. (1993). Influence of growth conditions on production and activity of mesenterocin 5 by a strain of Leuconostoc mesenteroides. Applied Microbiology and Biotechnology, 39(2), 166–173. DOI:10.1007/BF00228601

12. • De Arauz, L. J., et al. (2009). Nisin biotechnological production and application: a review. Trends in Food Science & Technology, 20(3–4), 146–154. DOI:10.1016/j.tifs.2009.01.056

13. • De Carvalho, A. A. T., et al. (2009). The effect of carbon and nitrogen sources on bovicin HC5 production by Streptococcus bovis HC5. Journal of Applied Microbiology, 107(1), 339–347. DOI:10.1111/j.1365-2672.2009.04212.x

14. • De Vuyst, L. (1994). Lactostrepcins, bacteriocins produced by Lactococcus lactis strains. In: Bacteriocins of Lactic Acid Bacteria, 291–299. Boston, MA: Springer US.

15. • Dobson, A. et al. Bacteriocin production: a probiotic trait? // Applied and Environmental Microbiology. – 2012. – Vol. 78, № 1. – P. 1-6. DOI:10.1128/AEM.05576-11

16. • Dominguez, A. P. M., et al. (2007). Cerein 8A production in soybean protein using response surface methodology. Biochemical Engineering Journal, 35(2), 238–243. DOI:10.1016/j.bej.2007.01.019

17. • Garsa, A. K., et al. (2014). Bacteriocin production and different strategies for their recovery and purification. Probiotics and Antimicrobial Proteins, 6(1), 47–58. DOI:10.1007/s12602-013-9153-z

18. • Geisen, R., et al. (1993). Bacteriocin production of Leuconostoc carnosum LA54A at different combinations of pH and temperature. Journal of Industrial Microbiology, 12(3–5), 337–340. DOI:10.1007/BF01584211

19. • Gharsallaoui, A., et al. (2020). Structural and functional insights into class IIa bacteriocins. Biochemical Journal, 477(1), 1–15. DOI:10.1042/BCJ20190475

20. • Gong, X., et al. (2023). Immobilized cell systems for bacteriocin production. Bioresource Technology, 370, 128523. DOI:10.1016/j.biortech.2022.128523

21. • Guerra, N. P., & Pastrana, L. (2001). Enhanced nisin and pediocin production on whey with nitrogen sources. Biotechnology Letters, 23(8), 609–612. DOI:10.1023/A:1010324910806

22. • Guerra, N. P., et al. (2008). Modelling biphasic growth and pediocin production by Pediococcus acidilactici in fed-batch cultures. Biochemical Engineering Journal, 40(3), 465–472. DOI:10.1016/j.bej.2008.02.001

23. • Holzapfel, W. H., Wood, B. J. B. (Eds.). (2018). Lactic Acid Bacteria: Biodiversity and Taxonomy (2nd ed.). Hoboken: Wiley-Blackwell. P. 632. DOI:10.1002/9781118995255

24. • Kim, W. S., et al. (1997). The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis. Applied Microbiology and Biotechnology, 48(4), 449–453. DOI:10.1007/s002530051078

25. • Liu, G., et al. (2022). CRISPR-Cas9 engineering of Lactococcus lactis for enhanced nisin yield. ACS Synthetic Biology, 11(3), 1123–1135. DOI:10.1021/acssynbio.1c00567

26. • Liu, G., Nie, R., Liu, Y., Li, X., Duan, J., Hao, X., Shan, Y., & Zhang, J. (2022). Bacillus subtilis BS-15 Effectively Improves Plantaricin Production and the Regulatory Biosynthesis in Lactiplantibacillus plantarum RX-8. Frontiers in microbiology, 12, 772546. https://doi.org/10.3389/fmicb.2021.772546

27. • Ljungh, A., Wadstrom, T. (Eds.). (2021). Lactobacillus Molecular Biology (4th ed.). Norfolk: Caister Academic Press. P. 298. DOI:10.21775/9781913652619

28. • Luesink, E. J., et al. (1998). Transcriptional regulation of the las and gal operons in Lactococcus lactis. Molecular Microbiology, 30(4), 789–798. DOI:10.1046/j.1365-2958.1998.01111.x

29. • Mataragas, M., et al. (2002). Characterization of two bacteriocins produced by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442, isolated from dry fermented sausages. World Journal of Microbiology and Biotechnology, 18(9), 847–856. DOI:10.1023/A:1021239008582

30. • Mataragas, M., Metaxopoulos, J. and Drosinos, E. H. 2002. Characterization of two bacteriocins produced by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442, isolated from dry fermented sausages. World Journal of Microbiology and Biotechnology 18 (9):847–56. doi:10.1023/A:1021239008582.

31. • Miao, J., et al. (2015). Optimization of culture conditions for the production of antimicrobial substances by probiotic Lactobacillus paracasei subsp. tolerans FX-6. Journal of Functional Foods, 18, 244–253. DOI:10.1016/j.jff.2015.07.011

32. • Montville, T. J., Matthews, K. R. (2021). Food Microbiology: An Introduction (4th ed.). Washington: ASM Press. P. 598. DOI:10.1128/9781555819974

33. • Moretro, T., et al. (2000). Production of sakacin P by Lactobacillus sakei in defined medium. Journal of Applied Microbiology, 88(3), 536–545. DOI:10.1046/j.1365-2672.2000.00994.x

34. • Motta, A. S., & Brandelli, A. (2003). Influence of growth conditions on bacteriocin production by Brevibacterium linens. Applied Microbiology and Biotechnology, 62(2–3), 163–167. DOI:10.1007/s00253-003-1292-9

35. • Mozzi, F., et al. (2020). Biotechnology of Lactic Acid Bacteria: Novel Applications (2nd ed.). Hoboken: Wiley. P. 432. DOI:10.1002/9781119593132

36. • Nes, I. F., et al. (2020). Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications. Hoboken: Wiley. P. 356. DOI:10.1002/9781119599819

37. • Papagianni, M., & Sergelidis, D. (2013). Effects of the presence of the curing agent sodium nitrite on bacteriocin production by Weissella paramesenteroides DX. Enzyme and Microbial Technology, 53(1), 1–5. DOI:10.1016/j.enzmictec.2013.04.003

38. • Papagianni, M., et al. (2007). Investigating the relationship between the specific glucose uptake rate and nisin production in cultures of Lactococcus lactis. Enzyme and Microbial Technology, 40(6), 1557–1563. DOI:10.1016/j.enzmictec.2006.10.035

39. • Parente, E., & Hill, C. (1992). A comparison of factors affecting the production of two bacteriocins from lactic acid bacteria. Journal of Applied Bacteriology, 73(4), 290–298. DOI:10.1111/j.1365-2672.1992.tb04980.x

40. • Parente, E., & Ricciardi, A. (1994). Influence of pH on the production of enterocin 1146 during batch fermentation. Letters in Applied Microbiology, 19(1), 12–15. DOI:10.1111/j.1472-765X.1994.tb00891.x

41. • Parente, E., et al. (1994). Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140Nwc. Applied Microbiology and Biotechnology, 41(4), 388–389.

42. • Pattnaik, P., et al. (2001). Purification and characterization of a bacteriocin-like compound (Lichenin) produced anaerobically by Bacillus licheniformis. Journal of Applied Microbiology, 91(4), 636–645. DOI:10.1046/j.1365-2672.2001.01429.x

43. • Pattnaik, P., et al. (2005). Effect of environmental factors on production of lichenin by Bacillus licheniformis 26L-10/3RA. Microbiological Research, 160(2), 213–218. DOI:10.1016/j.micres.2005.01.006

44. • Salminen, S., et al. (2022). Lactic Acid Bacteria: Microbiological and Functional Aspects (5th ed.). Boca Raton: CRC Press. P. 688. DOI:10.1201/9781003049223

45. • Savadogo, A. (2019). Bacteriocins and Food Safety. London: Academic Press. P. 284. DOI:10.1016/C2017-0-02385-7

46. • Schirru, S., et al. (2014). Comparison of bacteriocins production from Enterococcus faecium strains in cheese whey and MRS medium. Annals of Microbiology, 64(1), 321–331. DOI:10.1007/s13213-013-0667-0

47. • Settanni, L., & Corsetti, A. (2008). Application of bacteriocins in vegetable food biopreservation. International Journal of Food Microbiology, 121(2), 123–138. DOI:10.1016/j.ijfoodmicro.2007.09.001

48. • Shin, J. M., et al. (2021). Heterologous expression of bacteriocins using lactic acid bacteria. Metabolic Engineering, 67, 1–10. DOI:10.1016/j.ymben.2021.05.007

49. • Sonomoto, K., Yokota, A. (Eds.). (2021). Lactic Acid Bacteria: Engineering and Applications (2nd ed.). Berlin: Springer. P. 498. DOI:10.1007/978-981-33-6236-9

50. • Stiles, M. E., Holzapfel, W. H. (2022). Lactic Acid Bacteria: Microbiological and Functional Aspects (5th ed.). Boca Raton: CRC Press. P. 712. DOI:10.1201/9781003049223

51. • Todorov, S. D., et al. (2006). Effect of medium components on bacteriocin production by Lactobacillus plantarum strains ST23LD and ST341LD, isolated from spoiled olive brine. Microbiological Research, 161(2), 102–128. DOI:10.1016/j.micres.2005.06.006

52. • Todorov, S. D., et al. (2010). Characterization of bacteriocins produced by two strains of Lactobacillus plantarum isolated from Beloura and Chourico, traditional pork products from Portugal. Meat Science, 84(3), 334–343. DOI:10.1016/j.meatsci.2009.08.053

53. • Vignolo, G. M., et al. (1995). Influence of growth conditions on the production of lactocin 705 by Lactobacillus casei CRL 705. Journal of Applied Bacteriology, 78(1), 5–10. DOI:10.1111/j.1365-2672.1995.tb01665.x

54. • Xu, Y., Yang, L., Li, P., & Gu, Q. (2019). Heterologous expression of Class IIb bacteriocin Plantaricin JK in Lactococcus lactis. Protein expression and purification, 159, 10–16. https://doi.org/10.1016/j.pep.2019.02.013

55. • Yang, R., & Ray, B. (1994). Factors influencing production of bacteriocins by lactic acid bacteria. Food Microbiology, 11(4), 281–291. DOI:10.1006/fmic.1994.1032

56. • Yang, S. C., et al. (2023). Next-generation bacteriocins: expanding the synthetic biology toolbox. Nature Reviews Chemistry, 7(2), 1–18. DOI:10.1038/s41570-022-00450-1

57. • Zamfir, M., et al. (2000). Production kinetics of acidophilin 801 by Lactobacillus acidophilus IBB 801. FEMS Microbiology Letters, 190(2), 305–308. DOI:10.1111/j.1574-6968.2000.tb09303.x

58. • Guseva, T. B., Soldatova, S. Y., & Karanian, O. M. (2021). Organoleptic evaluation of canned milk products: features of conducting and interpreting the results. Commodity Specialist of Food Products, 10, 726-729. DOI:10.33920/igt-01-2110-01

59. • Egorov, N. S. (2020). Fundamentals of biotechnology of lactic acid bacteria. St. Petersburg: Profession. p. 328.

60. • Looze, V. V., Kostromina, T. G., & Soldatova, S. Y. (2024). New opportunities for scientific research on the preservation of state reserves in permafrost. Scientific support for technological development and increasing competitiveness in the food and processing industry (pp. 69-74). V.M. Gorbatov Federal Scientific Center for Food Systems.

61. • Soldatova, S. Y., Filatova, G. L., & Kulikovskaya, T. S. (2019). Listeriosis is an emergent infection with foodborne transmission. Bulletin of Nizhnevartovsk State University, 2, 110-117.


Review

For citations:


Sokolov I.R., Nsanova V.M., Vinogradov V.M., Kanochkina M.S. Mechanisms of Enhancing Bacteriocin Synthesis by Members of the Lactobacillaceae. FOOD METAENGINEERING. 2025;3(2). https://doi.org/10.37442/fme.2025.2.81

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-6497 (Online)