Preview

FOOD METAENGINEERING

Advanced search

The Impact of Storage Conditions on the Physicochemical Properties of Electrochemically Activated Solutions

https://doi.org/10.37442/fme.2024.3.57

Abstract

Introduction: Microbiological safety in food production is closely linked to the implementation of sanitary, hygienic, and anti-epidemic measures, where disinfectants play a critical role. The effectiveness of disinfectants largely depends on their stability and changes in physicochemical properties during storage. Existing literature highlights the insufficient study of the wetting properties of electrochemically activated solutions (ECAS) of anolytes in conjunction with traditionally analyzed characteristics such as active chlorine content, hydrogen ion activity (pH), and oxidation-reduction potential (ORP).

Purpose: To investigate the impact of storage conditions on the physicochemical properties of electrochemically activated neutral and acidic anolytes, including their wettability and stability.

Materials and Methods: The study objects were acidic and neutral electrochemically activated solutions obtained using electrolysis systems. The stability of anolyte solutions was evaluated based on active chlorine content, oxidation-reduction potential (ORP), and pH values. Wettability was assessed by the contact angle (CA) in a three-phase system using the Young-Laplace method.

Results: During the 70-day storage of acidic anolytes, ORP decreased compared to the initial solution, with the rate of decline depending on storage conditions and the most significant drop occurring in the initial days. For neutral anolyte samples, no significant ORP reduction was observed. However, samples stored in containers of different materials at a temperature of 5±1 ℃ showed a slight increase in ORP, which stabilized after 15–20 days. In neutral anolytes, the rate of active chlorine decrease was significantly lower than in acidic anolytes and correlated with pH reductions. This may be attributed to the formation of chlorine-containing acids in stored samples, shifting the solutions from neutral to acidic. The contact angle (CA) of anolytes on stainless steel surfaces after storage was comparable to the CA of a 0.1 N hydrochloric acid solution.

Conclusion: Storage conditions significantly influence the physicochemical and consumer properties of anolytes. Under different storage conditions, temperature is the most critical factor determining the stability of both acidic and neutral anolytes. Neutral anolytes are preferable for use and storage but require adherence to specific conditions. Neutral ECAS anolytes should be stored in closed glass, stainless steel, or enamel containers in a cool, dark place, away from heat sources and direct sunlight, at temperatures ranging from 0°C to +8°C, while following proper storage compatibility principles.

About the Authors

Boris V. Manevich
All-Russian Dairy Research Institute
Russian Federation


Evgeniy N. Titov
Russian State Social University
Russian Federation


Elena A. Burykina
All-Russian Dairy Research Institute
Russian Federation


References

1. Бессарабова, М., Позднякова, М. (2021). О роли госпитального эпидемиолога в организации и проведении дезинфекционных мероприятий в медицинских организациях. Актуальные вопросы профилактической медицины и санитарно-эпидемиологического благополучия населения: факторы, технологии, управление и оценка рисков. Медиал. (с. 126-128).

2. Кузина, Ж., Маневич, Б. (2015). Санитарно-гигиенические мероприятия на предприятиях молочной промышленности. МОЛОКО. Переработка и хранение: коллективная монография (pp. 402-439). ВНИМИ.

3. Маневич, Б. (2007). Дезинфицирующие средства: о «хлорке» и хлорсодержащих препаратах. Переработка молока, 5, 22-24.

4. Маневич, Б., Кузина, Ж., Косьяненко, Т., Гаврилова, Н. (2019). Смачивание и его роль в процессах санитарной обработки автоматов розлива и фасовки. Переработка молока, 10, 68-70. http://doi.org/10.33465/2222-5455-2019-10-68-70

5. Маневич, Б., Бурыкина, Е. (2022). О контроле остаточных количеств средств санитарной обработки в контексте эффективного и безопасного применения. Молочная промышленность, 8, 26-28. http://dx.doi.org/10.31515/1019-8946-2022-08-26-28

6. Маневич, Б., & Титов, Е. (2023). Оценка смачивающих свойств пероксида водорода в контексте безопасного применения при асептическом розливе молока. FOOD METAENGINEERING, 1(2), 54-65. https://doi.org/10.37442/fme.2023.2.21

7. Маневич, Б., & Титов, Е. (2024). Электролизные растворы в санитарной обработке: прошлое и настоящее. Молочная промышленность, 1, 60–63. https://doi.org/10.21603/1019-8946-2024-1-3

8. Метлева, А., Евстратенко, А. (2021). Антибиотико-резистентные микроорганизмы в сельском хозяйстве. Актуальные научно-технические средства и сельскохозяйственные проблемы. Кузбасская государственная сельскохозяйственная академия. (pp. 306-310).

9. Панкратова Г., Бидёвкина М., Шайхутдинова З. (2023). Безопасность использования в практике дезинфицирующих средств на основе гипохлорита натрия. Дезинфекционное дело, 1(123), 23–30. https://doi.org/10.35411/2076-457X-2023-1-23-30

10. Петрова, О., Барашкин, М., Мильштейн, И., Кудряшова, Е., & Колобкова, Н. (2020). Микробиологическое тестирование дезинфицирующего средства «нейтральный анолит». Вестник биотехнологии, (1), 20-27.

11. Семенихина, В. Ф. (2020). Пробиотические культуры и их свойства. Актуальные вопросы молочной промышленности, межотраслевые технологии и системы управления качеством, 1(1), 481–484. https://doi.org/10.37442/978-5-6043854-1-8-2020-1-481-484

12. Шестопалов, Н., Пантелеева, Л., Соколова, Н., Абрамова, И., Лукичев, C. (2015). Федеральные клинические рекомендации по выбору химических средств дезинфекции и стерилизации для использования в медицинских организациях. Ремедиум Приволжье.

13. Aniyyah, M., Idhamnulhadi, Z., Shah, A., Shakirah, H., Suhaila, A., Norazlina, H., Najwa, M. (2022). Electrolysis study effect on electrolyzed water as disinfectant and sanitizer. Journal of Physics: Conference Series, 2266(1), 12004. https://doi.org/10.1088/1742-6596/2266/1/012004

14. Clayton, G. E., Thorn, R. M., & Reynolds, D. M. (2021). The efficacy of chlorine-based disinfectants against planktonic and biofilm bacteria for decentralised point-of-use drinking water. npj Clean Water, 4(1), 48. https://doi.org/10.1038/s41545-021-00139-w

15. Cui, X., Shang, Y., Shi, Z., Xin, H., & Cao, W. (2009). Physicochemical properties and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions. Journal of Food Engineering, 91(4), 582-586. https://doi.org/10.1016/j.jfoodeng.2008.10.006

16. Fabrizio, K., & Cutter T. (2003). Stability of electrolyzed oxidizing water and its efficacy against cell suspensions of Salmonella typhimurium and Listeria monocytogenes. Journal Food Protection, 66, 1379-1384. https://doi.org/10.4315/0362-028X-66.8.1379

17. Garcia-Rodriguez, O., Mousset, E., Olvera-Vargas, H., & Lefebvre, O. (2022). Electrochemical treatment of highly concentrated wastewater: A review of experimental and modeling approaches from lab-to full-scale. Critical Reviews in Environmental Science and Technology, 52(2), 240-309. https://doi.org/10.1039/D2RA02733J

18. He, Y., Zhao, X., Chen, L., Zhao, L., & Yang, H. (2021). Effect of electrolysed water generated by sodium chloride combined with sodium bicarbonate solution against Listeria innocua in broth and on shrimp. Food Control, 127, 108134. https://doi.org/10.1016/j.jwpe.2021.102228

19. Kunigk, L.; Schramm, L.; Kunigk, C. (2008). Hypochlorous acid loss from neutral electrolyzed water and sodium hypochlorite solutions upon storage. Brazilian Journal Food Technology, 11, 153-158.

20. Len, S., Hung, Y. Chung, D., Anderson, J., Erickson, M., & Morita, K. (2002). Effects of storage conditions and ph on chlorine loss in electrolyzed oxidizing (EO) water. Journal of Agricultural and Food Chemistry, 50, 209-212. https://doi.org/10.1021/jf010822v

21. Mohammadi, S., Ebadi, T. (2021). Production of a water disinfectant by membrane electrolysis of brine solution and evaluation of its quality change during the storage time. Arabian Journal of Chemistry, 14(2), 102925. https://doi.org/10.1016/j.arabjc.2020.102925

22. Nisola, G., Yang, X., Cho, E., Han, M., Lee, C., Chung, W. (2011). Disinfection performances of stored acidic and neutral electrolyzed waters generated from brine solution. Journal of Environmental Science and Health, Part A, 46, 263–270. https://doi.org/10.1080/10934529.2011.535428

23. Park, G., Boston, D., Kase, J., Sampson, M., Sobsey, M. (2007). Evaluation of liquid- and fog-based application of sterilox hypochlorous acid solution for surface inactivation of human norovirus. Applied and Environmental Microbiology, 73, 4463–4468. https://doi.org/10.1128/AEM.02839-06

24. Pivovarov, О., Kovalova, О., Koshulko, V. (2022). Disinfection of marketable eggs by plasma-chemically activated aqueous solutions. Food Science & Technology, 16(1), 101. https://doi.org/10.15673/fst.v16i1.2289

25. Scialdone, O., Proietto, F., Galia, A. (2021). Electrochemical production and use of chlorinated oxidants for the treatment of wastewater contaminated by organic pollutants and disinfection. Current Opinion in Electrochemistry, 27, 100682. https://doi.org/10.1016/j.coelec.2020.100682

26. Shi, H., Li, C., Lu, H., Zhu, J., Tian, S. (2023). Synergistic effect of electrolyzed water generated by sodium chloride combined with dimethyl dicarbonate for inactivation of Listeria monocytogenes on lettuce. Journal of the Science of Food and Agriculture, 103(15), 7905–7913. https://doi.org/10.1002/jsfa.12884

27. Thorn, R., Lee, S., Robinson, G, Greenman, J., Reynolds, D. (2012). Electrochemically activated solutions: Evidence for antimicrobial efficacy and applications in healthcare environments. European Journal of Clinical Microbiology Infectious Diseases, 31, 641-653. https://doi.org/10.1007/s10096-011-1369-9

28. Yan, P., Daliri, E., Oh, D. (2021). New clinical applications of electrolyzed water: A review. Microorganisms, 9(1),136. https://doi.org/10.3390/microorganisms9010136


Supplementary files

Review

For citations:


Manevich B.V., Titov E.N., Burykina E.A. The Impact of Storage Conditions on the Physicochemical Properties of Electrochemically Activated Solutions. FOOD METAENGINEERING. 2024;2(3):41-53. (In Russ.) https://doi.org/10.37442/fme.2024.3.57

Views: 124


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-6497 (Online)