Preview

FOOD METAENGINEERING

Advanced search

Application of Recombinant Proteins in Contemporary Food Biotechnology: A Scoping Review

https://doi.org/10.37442/fme.2024.2.46

Abstract

Introduction: Since 1994, the dynamic development of biotechnology and the widespread application of recombinant enzymes have led to new technological solutions in food production. Modern technologies enable the production of sugar, bread, beer, cheese, sausages, and other products using biotechnological processes and industrial food enzymes. The bioproduction of recombinant proteins has replaced natural enzymes, offering enzymes with enhanced catalytic functions, stability, and an extended range of operating conditions. These recombinant enzymes have proven to be economically more advantageous compared to natural and previously used recombinant enzymes.

Purpose: To delineate the scope of research on recombinant proteins and their role in modern food production from 1973 to 2024.

Materials and Methods: Sources were searched in the databases PubMed, RSCI, and Google Scholar. The review methodology adhered to the PRISMA-ScR protocol. The chronological scope of the review spans from 1973 to 2024.

Results: The initial search with keywords identified 121 sources: 101 from databases and 20 from other sources. After removing duplicates, 113 sources remained. A total of 111 full-text publications were assessed for eligibility, with two full publications excluded as ineligible. The main body of research indicates a trend towards the use of recombinant enzymes modified for improved physicochemical and catalytic properties. There is a noticeable trend towards the more widespread use of recombinant proteins produced by precision fermentation methods. General information on the application of recombinant proteins in the food industry is provided. The role of recombinant proteins in modern food production is highlighted.

Conclusions: The development of molecular biotechnology has led to the creation of new enzymes and proteins for the food industry, expanding their use in cheese making, confectionery, and baking. Challenges exist in developing new enzymes, expression systems for bioproduction, and bioprocesses with fundamentally new characteristics, leading to greater economic feasibility. The analysis revealed challenges related to the need for regulatory compliance with current capabilities and trends in the bioproduction of recombinant proteins for the food industry. The results obtained can be used to improve the catalytic properties of recombinant enzymes and enhance the stability of enzyme preparations. These findings are useful for the targeted development of recombinant protein and enzyme production systems, increasing their productivity through a better understanding of the main directions of the modern recombinant enzyme industry for food production.

About the Authors

Sergey Filkin
https://www.fbras.ru/
Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук
Russian Federation


Alexey Lipkin
Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук


Alexey Fedorov
Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук


References

1. Aider, M. (2021). Potential applications of ficin in the production of traditional cheeses and protein hydrolysates. JDS Communications, 2(5), 233–237. https://doi.org/10.3168/jdsc.2020-0073

2. Akada, R. (2002). Genetically modified industrial yeast ready for application. Journal of Bioscience and Bioengineering, 94(6), 536–544. https://doi.org/10.1016/s1389-1723(02)80192-x

3. Arshad, Z. I. M., Amid, A., Yusof, F., Jaswir, I., Ahmad, K., & Loke, S. P. (2014). Bromelain: an overview of industrial application and purification strategies. Applied Microbiology and Biotechnology, 98(17), 7283–7297. https://doi.org/10.1007/s00253-014-5889-y

4. Bankefa, O. E., Samuel-Osamoka, F. C., & Oladeji, S. J. (2022). Improved enzyme production on corncob hydrolysate by a xylose-evolved Pichia pastoris cell factory. Journal of Food Science and Technology, 59(4), 1280–1287. https://doi.org/10.1007/s13197-021-05135-z

5. Bilal, M., Ji, L., Xu, S., Zhang, Y., Iqbal, H. M. N., & Cheng, H. (2022). Bioprospecting and biotechnological insights into sweet-tasting proteins by microbial hosts-a review. Bioengineered, 13(4), 9815–9828. https://doi.org/10.1080/21655979.2022.2061147

6. Bodie, E. A., Armstrong, G. L., & Dunn-Coleman, N. S. (1994). Strain improvement of chymosin-producing strains of Aspergillus niger var. awamori using parasexual recombination. Enzyme and Microbial Technology, 16(5), 376–382. https://doi.org/10.1016/0141-0229(94)90151-1

7. Borrelli, G., & Trono, D. (2015). Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. International Journal of Molecular Sciences, 16(9), 20774–20840.

8. Bray, G. A., Nielsen, S. J., & Popkin, B. M. (2004). Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. The American Journal of Clinical Nutrition, 79(4), 537–543. https://doi.org/10.1093/ajcn/79.4.537

9. Casey, J. P. (1976). High Fructose Corn Syrup – A Case History of Innovation. Research Management, 19(5), 27–32. JSTOR. https://doi.org/https://doi.org/10.1002/star.19770290605

10. Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3), 198–209. https://doi.org/10.1038/s43016-021-00225-9

11. Dahiya, S., Bajaj, B. K., Kumar, A., Tiwari, S. K., & Singh, B. (2020). A review on biotechnological potential of multifarious enzymes in bread making. Process Biochemistry, 99, 290–306. https://doi.org/10.1016/j.procbio.2020.09.002

12. Deckers, M., Deforce, D., Fraiture, M.-A., & Roosens, N. H. C. (2020). Genetically Modified Micro-Organisms for Industrial Food Enzyme Production: An Overview. Foods (Basel, Switzerland), 9(3). https://doi.org/10.3390/foods9030326

13. De Maria, L., Vind, J., Oxenbøll, K. M., Svendsen, A., & Patkar, S. (2007). Phospholipases and their industrial applications. Applied Microbiology and Biotechnology, 74(2), 290–300. https://doi.org/10.1007/s00253-006-0775-x

14. Eldarov, M. A., & Mardanov, A. V. (2020). Metabolic Engineering of Wine Strains of Saccharomyces cerevisiae. Genes, 11(9). https://doi.org/10.3390/genes11090964

15. Farag, M. A., Rezk, M. M., Hamdi Elashal, M., El-Araby, M., Khalifa, S. A. M., & El-Seedi, H. R. (2022). An updated multifaceted overview of sweet proteins and dipeptides as sugar substitutes; the chemistry, health benefits, gut interactions, and safety. Food Research International (Ottawa, Ont.), 162(Pt A), 111853. https://doi.org/10.1016/j.foodres.2022.111853

16. Fernandes, P. (2010). Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Research, 2010.

17. Fernández-Lucas, J., Castañeda, D., & Hormigo, D. (2017). New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends in Food Science & Technology, 68, 91–101. https://doi.org/10.1016/j.tifs.2017.08.017

18. Filkin, S. Y., Chertova, N. V., Vavilova, E. A., Zatsepin, S. S., Eldarov, M. A., Sadykhov, E. G., Fedorov, A. N., & Lipkin, A. V. (2020). Optimization of the Production Method for Recombinant Chymosin in the Methylotrophic Yeast Komagataella phaffii. Applied Biochemistry and Microbiology, 56(6), 657–661. https://doi.org/10.1134/S0003683820060058

19. Geistlinger T., Jensen H., Jhala R., Meerman, H., Ramesh, B., Wagoner, T., Johnson T. S., Wu V.W.-X., & Manea. F. (2020). Recombinant components and compositions for use in food products (WO2020081789A1).

20. Geistlinger T., Jhala R., Krueger K.P., & Ramesh, B. (2018). Food products comprising milk proteins and non-animal proteins, and methods of producing the same (WO2018039632A1).

21. Glinsmann, W. H., Irausquin, H., & Park, Y. K. (1986). Evaluation of health aspects of sugars contained in carbohydrate sweeteners. Report of Sugars Task Force, 1986. The Journal of Nutrition, 116(11 Suppl), S1–S216. https://doi.org/10.1093/jn/116.suppl_11.S1

22. Goverment of Canada. (2023, October 11). List of Permitted Food Enzymes (Lists of Permitted Food Additives). https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/food-additives/lists-permitted/5-enzymes.html

23. Healey, R. D., Lebhar, H., Hornung, S., Thordarson, P., & Marquis, C. P. (2017). An improved process for the production of highly purified recombinant thaumatin tagged-variants. Food Chemistry, 237, 825–832. https://doi.org/10.1016/j.foodchem.2017.06.018

24. Herrera-Estala, A. L., Fuentes-Garibay, J. A., Guerrero-Olazarán, M., & Viader-Salvadó, J. M. (2022). Low specific growth rate and temperature in fed-batch cultures of a beta-propeller phytase producing Pichia pastoris strain under GAP promoter trigger increased KAR2 and PSA1-1 gene expression yielding enhanced extracellular productivity. Journal of Biotechnology, 352, 59–67. https://doi.org/10.1016/j.jbiotec.2022.05.010

25. Hoppenreijs, L. J. G., Annibal, A., Vreeke, G. J. C., Boom, R. M., & Keppler, J. K. (2024). Food proteins from yeast-based precision fermentation: Simple purification of recombinant β-lactoglobulin using polyphosphate. Food Research International (Ottawa, Ont.), 176, 113801. https://doi.org/10.1016/j.foodres.2023.113801

26. Industrial enzymes markets by type (Carbohydrases, Proteases, Lipases, Polymerases, Nucleases). Sourse, Formulation and Region - Global Forecast to 2028. (2023, June). https://www.marketsandmarkets.com/Market-Reports/industrial-enzymes-market-237327836.html

27. Jaeckel C., Lund M., Hansen E.F., Riisberg L., Jeppesen I., & Van Den Brink J.M. (2016). Variants of chymosin with improved properties (WO2016207214A1).

28. Järviö, N., Parviainen, T., Maljanen, N.-L., Kobayashi, Y., Kujanpää, L., Ercili-Cura, D., Landowski, C. P., Ryynänen, T., Nordlund, E., & Tuomisto, H. L. (2021). Ovalbumin production using Trichoderma reesei culture and low-carbon energy could mitigate the environmental impacts of chicken-egg-derived ovalbumin. Nature Food, 2(12), 1005–1013. https://doi.org/10.1038/s43016-021-00418-2

29. Jhansi Rani, S., & Usha, R. (2013). Transgenic plants: Types, benefits, public concerns and future. Journal of Pharmacy Research, 6(8), 879–883. https://doi.org/10.1016/j.jopr.2013.08.008

30. John W. Bode. (2018, April). Corn Refiners Association Industry Overview 2017. https://corn.org/wp-content/uploads/2018/04/CRA-Industry-Overview-2017.pdf

31. Joseph, J. A., Akkermans, S., Nimmegeers, P., & Van Impe, J. F. M. (2019). Bioproduction of the Recombinant Sweet Protein Thaumatin: Current State of the Art and Perspectives. Frontiers in Microbiology, 10, 695. https://doi.org/10.3389/fmicb.2019.00695

32. Kappeler, S. R., van den Brink, H. J. M., Rahbek-Nielsen, H., Farah, Z., Puhan, Z., Hansen, E. B., & Johansen, E. (2006). Characterization of recombinant camel chymosin reveals superior properties for the coagulation of bovine and camel milk. Biochemical and Biophysical Research Communications, 342(2), 647–654. https://doi.org/10.1016/j.bbrc.2006.02.014

33. Karray, A., Gargouri, Y., Verger, R., & Bezzine, S. (2012). Phospholipase A2 Purification and Characterization: A Case Study. In G. Sandoval (Ed.), Lipases and Phospholipases: Methods and Protocols (pp. 283–297). Humana Press. https://doi.org/10.1007/978-1-61779-600-5_17

34. Kaur, H., & Gill, P. K. (2019). 9 - Microbial Enzymes in Food and Beverages Processing. In A. M. Grumezescu & A. M. Holban (Eds.), Engineering Tools in the Beverage Industry (pp. 255–282). Woodhead Publishing. https://www.sciencedirect.com/science/article/pii/B9780128152584000093

35. Kelada, K. D., Tusé, D., Gleba, Y., McDonald, K. A., & Nandi, S. (2021). Process Simulation and Techno-Economic Analysis of Large-Scale Bioproduction of Sweet Protein Thaumatin II. Foods (Basel, Switzerland), 10(4). https://doi.org/10.3390/foods10040838

36. Kumar, A., Grover, S., Sharma, J., & Batish, V. K. (2010). Chymosin and other milk coagulants: sources and biotechnological interventions. Critical Reviews in Biotechnology, 30(4), 243–258. https://doi.org/10.3109/07388551.2010.483459

37. Lee, J.-W., Cha, J.-E., Jo, H.-J., & Kong, K.-H. (2013). Multiple mutations of the critical amino acid residues for the sweetness of the sweet-tasting protein, brazzein. Food Chemistry, 138(2-3), 1370–1373. https://doi.org/10.1016/j.foodchem.2012.10.140

38. Lensch, A., Duwenig, E., Dederer, H.-G., Kärenlampi, S. O., Custers, R., Borg, A., & Wyss, M. (2022). Recombinant DNA in fermentation products is of no regulatory relevance. Food Control, 141, 109170. https://doi.org/10.1016/j.foodcont.2022.109170

39. Lerner, A., & Benzvi, C. (2021). Microbial Transglutaminase Is a Very Frequently Used Food Additive and Is a Potential Inducer of Autoimmune/Neurodegenerative Diseases. Toxics, 9(10). https://doi.org/10.3390/toxics9100233

40. Lilbaek, H. M., Broe, M. L., Høier, E., Fatum, T. M., Ipsen, R., & Sørensen, N. K. (2006). Improving the yield of Mozzarella cheese by phospholipase treatment of milk. Journal of Dairy Science, 89(11), 4114–4125. https://doi.org/10.3168/jds.S0022-0302(06)72457-2

41. Linder, T. (2023). Beyond Agriculture─How Microorganisms Can Revolutionize Global Food Production. ACS Food Science & Technology, 3(7), 1144–1152. https://doi.org/10.1021/acsfoodscitech.3c00099

42. Martins, I. M., Matos, M., Costa, R., Silva, F., Pascoal, A., Estevinho, L. M., & Choupina, A. B. (2014). Transglutaminases: recent achievements and new sources. Applied Microbiology and Biotechnology, 98(16), 6957–6964. https://doi.org/10.1007/s00253-014-5894-1

43. Meyer, V. (2008). Genetic engineering of filamentous fungi--progress, obstacles and future trends. Biotechnology Advances, 26(2), 177–185. https://doi.org/10.1016/j.biotechadv.2007.12.001

44. Motta, J., Freitas, B. C., Almeida, A., Martins, G., & Borges, S. (2023). Use of enzymes in the food industry: a review. Food Science and Technology, 43. https://doi.org/10.1590/fst.106222

45. Mridul А. (2023, September 5). 8 Charts That Illustrate the Impact of Food Systems and Our Diets on Climate Change. https://www.greenqueen.com.hk/stats-charts-facts-climate-change-impact-food-systems-diet-agricultu/].

46. Perfect Day, Inc. (2021, August 20). Comparative life cycle assessment of Perfect Day whey protein production to dairy protein. https://perfectday.com/wp-content/uploads/2022/01/Comparative-Perfect-Day-Whey-LCA-report-prepared-by-WSP_20AUG2021_Non-Confidential-1.pdf

47. Püllmann, P., & Weissenborn, M. J. (2021). Improving the Heterologous Production of Fungal Peroxygenases through an Episomal Pichia pastoris Promoter and Signal Peptide Shuffling System. ACS Synthetic Biology, 10(6), 1360–1372. https://doi.org/10.1021/acssynbio.0c00641

48. Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., Rebello, S., & Pandey, A. (2018). Applications of Microbial Enzymes in Food Industry. Food Technology and Biotechnology, 56(1), 16–30. https://doi.org/10.17113/ftb.56.01.18.5491

49. R. Buckminster Fuller. (1973). Nine Chains to the Moon, , 1938, 1973, (pp. 252–259). Anchor Books.

50. Robinson, P. K. (2015). Enzymes: principles and biotechnological applications. Essays in Biochemistry, 59, 1–41. https://doi.org/10.1042/bse0590001

51. Roy-Chaudhuris B., & Shankar M. (2020). Strains and methods for production of heme-containing proteins (WO2020219972A1).

52. Shahbandeh M. (2023, October 30). Value of the whey protein market worldwide from 2022 to 2032. https://www.statista.com/statistics/728005/global-whey-protein-market-size/)

53. Shakweer, W. M. E., Krivoruchko, A. Y., Dessouki, S. M., & Khattab, A. A. (2023). A review of transgenic animal techniques and their applications. Journal, Genetic Engineering & Biotechnology, 21(1), 55. https://doi.org/10.1186/s43141-023-00502-z

54. Singh, R., Kim, S., Kumari, A., & Mehta, P. (2022). An Overview of Microbial α-amylase and Recent Biotechnological Developments. Current Biotechnology, 11. https://doi.org/10.2174/2211550111666220328141044

55. Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6(2), 174. https://doi.org/10.1007/s13205-016-0485-8

56. Spohner, S. C., Müller, H., Quitmann, H., & Czermak, P. (2015). Expression of enzymes for the usage in food and feed industry with Pichia pastoris. Journal of Biotechnology, 202, 118–134. https://doi.org/10.1016/j.jbiotec.2015.01.027

57. Sun, H., Bankefa, O. E., Ijeoma, I. O., Miao, L., Zhu, T., & Li, Y. (2017). Systematic assessment of Pichia pastoris system for optimized β -galactosidase production. Synthetic and Systems Biotechnology, 2(2), 113–120. https://doi.org/10.1016/j.synbio.2017.04.001

58. Sutay Kocabaş, D., & Grumet, R. (2019). Evolving regulatory policies regarding food enzymes produced by recombinant microorganisms. GM Crops & Food, 10(4), 191–207. https://doi.org/10.1080/21645698.2019.1649531

59. Sylvester,Brian P. (2022, March 4). GRAS Notice for Non-Animal P-Lactoglobulin Whey Protein from Fermentation by Komagataella phaffi. https://www.fda.gov/media/168464/download

60. Thomsen, P. T., Meramo, S., Ninivaggi, L., Pasutto, E., Babaei, M., Avila-Neto, P. M., Pastor, M. C., Sabri, P., Rago, D., Parekh, T. U., Hunding, S., Christiansen, L. E. J., Sukumara, S., & Borodina, I. (2023). Beet red food colourant can be produced more sustainably with engineered Yarrowia lipolytica. Nature Microbiology, 8(12), 2290–2303. https://doi.org/10.1038/s41564-023-01517-5

61. Vestergaard, M., Chan, S. H. J., & Jensen, P. R. (2016). Can microbes compete with cows for sustainable protein production - A feasibility study on high quality protein. Scientific Reports, 6, 36421. https://doi.org/10.1038/srep36421

62. White, J. S. (2008). Straight talk about high-fructose corn syrup: what it is and what it ain’t. The American Journal of Clinical Nutrition, 88(6), 1716S – 1721S. https://doi.org/10.3945/ajcn.2008.25825B

63. Wolff A., Gaydar V., & Cohavi O. (2022). Methods of producing animal-free casein compositions, casein compositions and use of same (WO2022038601A1).

64. Yu, F., Zhao, X., Zhou, J., Lu, W., Li, J., Chen, J., & Du, G. (2023). Biosynthesis of High-Active Hemoproteins by the Efficient Heme-Supply Pichia Pastoris Chassis. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 10(30), e2302826. https://doi.org/10.1002/advs.202302826

65. Zhang, L., Zhao, C., Zhu, D., Ohta, Y., & Wang, Y. (2004). Purification and characterization of inulinase from Aspergillus niger AF10 expressed in Pichia pastoris. Protein Expression and Purification, 35(2), 272–275. https://doi.org/10.1016/j.pep.2004.02.015


Supplementary files

1. Рисунок 1
Subject
Type Исследовательские инструменты
View (325KB)    
Indexing metadata ▾
2. Рисунок 2
Subject
Type Исследовательские инструменты
View (380KB)    
Indexing metadata ▾
3. Рисунок 3
Subject
Type Исследовательские инструменты
View (592KB)    
Indexing metadata ▾
4. Рисунок 4
Subject
Type Исследовательские инструменты
View (268KB)    
Indexing metadata ▾

Review

For citations:


Filkin S., Lipkin A., Fedorov A. Application of Recombinant Proteins in Contemporary Food Biotechnology: A Scoping Review. FOOD METAENGINEERING. 2024;2(2). (In Russ.) https://doi.org/10.37442/fme.2024.2.46

Views: 283


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-6497 (Online)