Antinutrients in Grain-Based Plant Drinks: Scoping Review
https://doi.org/10.37442/fme.2023.1.3
Abstract
Introduction: Plant-based beverages in the consumer market are positioned as an alternative to natural milk, including their nutritional value. Traditional milk raw materials are characterized by high nutritional value due to the optimal balance of components and their easy digestibility. However, the plant materials used in the production of drinks contain anti-nutritional substances. Anti-nutritional nutrients can limit the bioavailability of primary nutrients, leading to impoverishment of the human diet and a decrease in the nutritional value of food products.
Purpose: The purpose of this scoping review is a comprehensive analysis of various anti-nutritional factors in grain-based plant drinks with an assessment of methods and conditions for their inhibition.
Materials and Methods: This scoping review was conducted in accordance with the guiding principles of PRISMA-ScR. The databases SCOPUS, ScienceDirect, Google Scholar were used for article selection. The search was carried out for the period 2017-2022. As a result of the search, 77 publications from 35 countries worldwide were selected. The subject field review protocol was drafted and registered on the Open Science Framework website (https://osf.io/gcb3y).
Results: Out of 4432 selected publications, 77 met the inclusion criteria for the review. The analysis of the selected publications identified the main anti-nutritional substances present in grain drinks. These nutrients include phytic acid, phytates, lectins, saponins, oxalates, enzyme inhibitors. The authors of a significant portion of the publications (70%) devoted to the issue of antinutrients in the product, investigate this question within the technology of producing plant drinks. Trends such as negative and positive effects of antinutrients, methods of inhibiting anti-nutritional substances were identified. The obtained results allowed highlighting a new direction of non-traditional methods of inhibiting antinutrients, which had not been recorded before.
Conclusion: The main area of application of the research results can be the expansion of the scientific-practical database about antinutritional substances and the practical implementation of the proposed recommendations in the production cycle. The obtained data will significantly increase the nutritional value of grain-based beverages.
About the Author
Maria N. StrizhkoRussian Federation
References
1. 9 Dairy Trends for 2019 / market research report / Euromonitor. (2019). https://www.euromonitor.com/9-dairy-trends-for-2019/report
2. Abdulwaliyu, I., Arekemase, S. O., Adudu, J. A., Batari, M. L., Egbule, M. N., & Okoduwa, S. I. R. (2019). Investigation of the medicinal significance of phytic acid as an indispensable anti-nutrient in diseases. Clinical Nutrition Experimental, 28, 42–61. https://doi.org/10.1016/j.yclnex.2019.10.002
3. Achi, O. K., & Asamudo, N. U. (2019). Cereal-Based Fermented Foods of Africa as Functional Foods. In J.-M. Mérillon & K. G. Ramawat (Eds.), Bioactive Molecules in Food (pp. 1527–1558). Springer International Publishing. https://doi.org/10.1007/978-3-319-78030-6_31
4. Adebo, O. A., & Medina-Meza, I. G. (2020). Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal Grains: A Mini Review. Molecules 2020, Vol. 25, Page 927, 25(4), 927. https://doi.org/10.3390/MOLECULES25040927
5. Aderibigbe, O. R., Ezekiel, O. O., Owolade, S. O., Korese, J. K., Sturm, B., & Hensel, O. (2020). Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Https://Doi.Org/10.1080/10408398.2020.1825323, 62(3), 656–669. https://doi.org/10.1080/10408398.2020.1825323
6. Adise, S., Gavdanovich, I., & Zellner, D. A. (2015). Looks like chicken: Exploring the law of similarity in evaluation of foods of animal origin and their vegan substitutes. Food Quality and Preference, 41, 52–59. https://doi.org/10.1016/J.FOODQUAL.2014.10.007
7. Ahangaran, M., Afanasev, D. A., Chernukha, I. M., Mashentseva, N. G., & Gharaviri, M. (2022). Bioactive peptides and antinutrients in chickpea: Description and properties (a review). Proceedings on applied botany, genetics and breeding, 183(1), 214–223. https://doi.org/10.30901/2227-8834-2022-1-214-223
8. Ajayi, I. O., Otemuyiwa, I. O., Adeyanju, A. A., & Falade, O. S. (2021). Vegetable polyphenols inhibit starch digestibility and phenolic availability from composite carbohydrate foods in-vitro. Journal of Agriculture and Food Research, 3, 100116. https://doi.org/10.1016/j.jafr.2021.100116
9. Alemayehu, G. F., Forsido, S. F., Tola, Y. B., Teshager, M. A., Assegie, A. A., & Amare, E. (2021). Proximate, mineral and anti-nutrient compositions of oat grains (Avena sativa) cultivated in Ethiopia: Implications for nutrition and mineral bioavailability. Heliyon, 7(8), e07722. https://doi.org/10.1016/j.heliyon.2021.e07722
10. Astley, S., & Finglas, P. (2016). Nutrition and Health. Reference Module in Food Science. https://doi.org/10.1016/B978-0-08-100596-5.03425-9
11. Atuna, R. A., Ametei, P. N., Bawa, A.-A., & Amagloh, F. K. (2022). Traditional processing methods reduced phytate in cereal flour, improved nutritional, functional and rheological properties. Scientific African, 15, e01063. https://doi.org/10.1016/j.sciaf.2021.e01063
12. Awulachew, M. T. (2022). A Review of anti-nutritional factors in Plant Based Foods. Food Science & Nutrition Research, Ethiopian Institute of Agricultural Research, 7(3), 223–236.
13. Aydar, E. F., Tutuncu, S., & Ozcelik, B. (2020). Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. Journal of Functional Foods, 70, 103975. https://doi.org/10.1016/J.JFF.2020.103975
14. Babiker, E., Abdelseed, B., Hassan, H., & Adiamo, O. (2018). Effect of decortication methods on the chemical composition, antinutrients, Ca, P and Fe contents of two pearl millet cultivars during storage. World Journal of Science, Technology and Sustainable Development, 15(3), 278–286. https://doi.org/10.1108/WJSTSD-01-2018-0005
15. Bayless, T. M., Brown, E., & Paige, D. M. (2017). Lactase Non-persistence and Lactose Intolerance. Current Gastroenterology Reports, 19(5), 1–11. https://doi.org/10.1007/S11894-017-0558-9/FIGURES/1
16. Bekiroglu, H., Goktas, H., Karaibrahim, D., Bozkurt, F., & Sagdic, O. (2022). Determination of rheological, melting and sensorial properties and volatile compounds of vegan ice cream produced with fresh and dried walnut milk. International Journal of Gastronomy and Food Science, 28, 100521. https://doi.org/10.1016/J.IJGFS.2022.100521
17. Bocker, R., & Silva, E. K. (2022). Innovative technologies for manufacturing plant-based non-dairy alternative milk and their impact on nutritional, sensory and safety aspects. Future Foods, 5, 100098. https://doi.org/10.1016/J.FUFO.2021.100098
18. Bonke, A., Sieuwerts, S., & Petersen, I. L. (2020). Amino Acid Composition of Novel Plant Drinks from Oat, Lentil and Pea. Foods 2020, Vol. 9, Page 429, 9(4), 429. https://doi.org/10.3390/FOODS9040429
19. Borin, J. F., Knight, J., Holmes, R. P., Joshi, S., Goldfarb, D. S., & Loeb, S. (2022). Plant-Based Milk Alternatives and Risk Factors for Kidney Stones and Chronic Kidney Disease. Journal of Renal Nutrition, 32(3), 363–365. https://doi.org/10.1053/j.jrn.2021.03.011
20. Budhwar, S., Sethi, K., & Chakraborty, M. (2020). Efficacy of germination and probiotic fermentation on underutilized cereal and millet grains. Food Production, Processing and Nutrition, 2(1), 1–17. https://doi.org/10.1186/S43014-020-00026-W/FIGURES/2
21. Bunkar, D., GOYAL, S., Meena, K. K., & Kamalvanshi, V. (2021). Nutritional, Functional Role of Kodo Millet and its Processing: A Review. International Journal of Current Microbiology and Applied Sciences, 10, 1972–1985.
22. Cardello, A. V., Llobell, F., Giacalone, D., Roigard, C. M., & Jaeger, S. R. (2022). Plant-based alternatives vs dairy milk: Consumer segments and their sensory, emotional, cognitive and situational use responses to tasted products. Food Quality and Preference, 100, 104599. https://doi.org/10.1016/J.FOODQUAL.2022.104599
23. Chalupa-Krebzdak, S., Long, C. J., & Bohrer, B. M. (2018). Nutrient density and nutritional value of milk and plant-based milk alternatives. In International Dairy Journal (Vol. 87). https://doi.org/10.1016/j.idairyj.2018.07.018
24. Clark, B. E., Pope, L., & Belarmino, E. H. (2022). Personal bias in nutrition advice: A survey of health professionals’ recommendations regarding dairy and plant-based dairy alternatives. PEC Innovation, 1, 100005. https://doi.org/10.1016/J.PECINN.2021.100005
25. Dahdouh, S., Grande, F., Espinosa, S. N., Vincent, A., Gibson, R., Bailey, K., King, J., Rittenschober, D., & Charrondière, U. R. (2019). Development of the FAO/INFOODS/IZINCG Global Food Composition Database for Phytate. Journal of Food Composition and Analysis, 78, 42–48. https://doi.org/10.1016/j.jfca.2019.01.023
26. Das, A. K., Islam, Md. N., Faruk, Md. O., Ashaduzzaman, Md., & Dungani, R. (2020). Review on tannins: Extraction processes, applications and possibilities. South African Journal of Botany, 135, 58–70. https://doi.org/10.1016/j.sajb.2020.08.008
27. de Boer, J., & Aiking, H. (2019). Strategies towards healthy and sustainable protein consumption: A transition framework at the levels of diets, dishes, and dish ingredients. Food Quality and Preference, 73, 171–181. https://doi.org/10.1016/J.FOODQUAL.2018.11.012
28. Dey, N., Kumari, N., Bhagat, D., & Bhattacharya, S. (2018). Smart optical probe for ‘equipment-free’ detection of oxalate in biological fluids and plant-derived food items. Tetrahedron, 74(34), 4457–4465. https://doi.org/10.1016/j.tet.2018.06.052
29. Dhesi, A., Ashton, G., Raptaki, M., & Makwana, N. (2020). Cow’s milk protein allergy. Paediatrics and Child Health, 30(7), 255–260. https://doi.org/10.1016/J.PAED.2020.04.003
30. do Nascimento, L. Á., Abhilasha, A., Singh, J., Elias, M. C., & Colussi, R. (2022). Rice Germination and Its Impact on Technological and Nutritional Properties: A Review. Rice Science, 29(3), 201–215. https://doi.org/10.1016/j.rsci.2022.01.009
31. E. I. Adeyeye, A. A. Olaleye, M. O. Aremu & J. O. Atere, O. T. Idowu. (2020). SUGAR, ANTINUTRIENT AND FOOD PROPERTIES LEVELS IN RAW, FERMENTED AND GERMINATED PEARL MILLET GRAINS. 5(3), 745–758.
32. Escobar-Sáez, D., Montero-Jiménez, L., García-Herrera, P., & Sánchez-Mata, M. C. (2022). Plant-based drinks for vegetarian or vegan toddlers: Nutritional evaluation of commercial products, and review of health benefits and potential concerns. Food Research International, 160, 111646. https://doi.org/10.1016/j.foodres.2022.111646
33. Faba-Rodriguez, R., Gu, Y., Salmon, M., Dionisio, G., Brinch-Pedersen, H., Brearley, C. A., & Hemmings, A. M. (2022). Structure of a cereal purple acid phytase provides new insights to phytate degradation in plants. Plant Communications, 3(2), 100305. https://doi.org/10.1016/j.xplc.2022.100305
34. Ferruzzi, M. G., Kruger, J., Mohamedshah, Z., Debelo, H., & Taylor, J. R. N. (2020). Insights from in vitro exploration of factors influencing iron, zinc and provitamin A carotenoid bioaccessibility and intestinal absorption from cereals. Journal of Cereal Science, 96, 103126. https://doi.org/10.1016/j.jcs.2020.103126
35. Ganguly, S., Sabikhi, L., & Singh, A. K. (2022). Effect of probiotic fermentation on physico-chemical and nutritional parameters of milk-cereal based composite substrate. Journal of Food Science and Technology, 59(8), 3073–3085. https://doi.org/10.1007/s13197-021-05350-8
36. Graça, J., Truninger, M., Junqueira, L., & Schmidt, L. (2019). Consumption orientations may support (or hinder) transitions to more plant-based diets. Appetite, 140, 19–26. https://doi.org/10.1016/J.APPET.2019.04.027
37. Grases, F., Prieto, R. M., Costa-Bauza, • A, Grases, F., Prieto, R. M., & Costa-Bauza, A. (2017). Dietary Phytate and Interactions with Mineral Nutrients. Clinical Aspects of Natural and Added Phosphorus in Foods, 175–183. https://doi.org/10.1007/978-1-4939-6566-3_12
38. Grundy, M. M. L., Momanyi, D. K., Holland, C., Kawaka, F., Tan, S., Salim, M., Boyd, B. J., Bajka, B., Mulet-Cabero, A.-I., Bishop, J., & Owino, W. O. (2020). Effects of grain source and processing methods on the nutritional profile and digestibility of grain amaranth. Journal of Functional Foods, 72, 104065. https://doi.org/10.1016/j.jff.2020.104065
39. Gulati, P., Li, A., Holding, D., Santra, D., Zhang, Y., & Rose, D. J. (2017). Heating Reduces Proso Millet Protein Digestibility via Formation of Hydrophobic Aggregates. Journal of Agricultural and Food Chemistry, 65(9), 1952–1959. https://doi.org/10.1021/acs.jafc.6b05574
40. Gunawan, S., Dwitasari, I., Rahmawati, N., Darmawan, R., Wirawasista Aparamarta, H., & Widjaja, T. (2022). Effect of process production on antinutritional, nutrition, and physicochemical properties of modified sorghum flour. Arabian Journal of Chemistry, 15(10), 104134. https://doi.org/10.1016/j.arabjc.2022.104134
41. Hassan, Z. M., Sebola, N. A., & Mabelebele, M. (2021). The nutritional use of millet grain for food and feed: A review. Agriculture & Food Security, 10(1), 16. https://doi.org/10.1186/s40066-020-00282-6
42. Hendek Ertop, M., & Bektaş, M. (2018). Enhancement of Bioavailable Micronutrients and Reduction of Antinutrients in Foods with Some Processes. Food and Health. Food and Health, 4(3), 159–165. https://doi.org/10.3153/FH18016
43. Huynh, N. K., Nguyen, D. H. M., & Nguyen, H. V. H. (2022). Effects of processing on oxalate contents in plant foods: A review. Journal of Food Composition and Analysis, 112, 104685. https://doi.org/10.1016/j.jfca.2022.104685
44. Ibragimova, Z. A., & Kuluev, B. R. (2020). Molecular basis of food and feed qualities of rye (Secale sereale) grain. Biomics, 12(1), 8–26. https://doi.org/10.31301/2221-6197.bmcs.2020-2
45. Ignat, M. V., Salanță, L. C., Pop, O. L., Pop, C. R., Tofană, M., Mudura, E., Coldea, T. E., Borșa, A., & Pasqualone, A. (2020). Current Functionality and Potential Improvements of Non-Alcoholic Fermented Cereal Beverages. Foods, 9(8), Article 8. https://doi.org/10.3390/foods9081031
46. Jaeger, S. R., & Giacalone, D. (2021). Barriers to consumption of plant-based beverages: A comparison of product users and non-users on emotional, conceptual, situational, conative and psychographic variables. Food Research International, 144, 110363. https://doi.org/10.1016/J.FOODRES.2021.110363
47. Jeske, S., Zannini, E., & Arendt, E. K. (2017). Evaluation of Physicochemical and Glycaemic Properties of Commercial Plant-Based Milk Substitutes. Plant Foods for Human Nutrition, 72(1), 26–33. https://doi.org/10.1007/S11130-016-0583-0
48. Jeske, S., Zannini, E., & Arendt, E. K. (2018). Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Research International, 110, 42–51. https://doi.org/10.1016/J.FOODRES.2017.03.045
49. Joye, I. (2019). Protein Digestibility of Cereal Products. Foods 2019, Vol. 8, Page 199, 8(6), 199. https://doi.org/10.3390/FOODS8060199
50. Kaiser, N., Douches, D., Dhingra, A., Glenn, K. C., Herzig, P. R., Stowe, E. C., & Swarup, S. (2020). The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends in Food Science & Technology, 100, 51–66. https://doi.org/10.1016/j.tifs.2020.03.042
51. Karmakar, A., Bhattacharya, S., Sengupta, S., Ali, N., Sarkar, S. N., Datta, K., & Datta, S. K. (2020). RNAi-Mediated Silencing of ITPK Gene Reduces Phytic Acid Content, Alters Transcripts of Phytic Acid Biosynthetic Genes, and Modulates Mineral Distribution in Rice Seeds. Rice Science, 27(4), 315–328. https://doi.org/10.1016/j.rsci.2020.05.007
52. Kaur, M., Asthir, B., & Mahajan, G. (2017). Variation in Antioxidants, Bioactive Compounds and Antioxidant Capacity in Germinated and Ungerminated Grains of Ten Rice Cultivars. Rice Science, 24(6), 349–359. https://doi.org/10.1016/j.rsci.2017.08.002
53. Komarova, O. N., & Khavkin, A. (2017). The role of cereals in human nutrition. Voprosy Detskoi Dietologii, 15, 45–51. https://doi.org/10.20953/1727-5784-2017-4-45-51
54. Konozy, E., Osman, M., & Dirar, A. (2022). Plant lectins as potent Anti-coronaviruses, Anti-inflammatory, antinociceptive and antiulcer agents. Saudi Journal of Biological Sciences, 29(6), 103301. https://doi.org/10.1016/j.sjbs.2022.103301
55. López-Moreno, M., Garcés-Rimón, M., & Miguel, M. (2022). Antinutrients: Lectins, goitrogens, phytates and oxalates, friends or foe? Journal of Functional Foods, 89, 104938. https://doi.org/10.1016/J.JFF.2022.104938
56. Mäkelä, N., Rosa-Sibakov, N., Wang, Y.-J., Mattila, O., Nordlund, E., & Sontag-Strohm, T. (2021). Role of β-glucan content, molecular weight and phytate in the bile acid binding of oat β-glucan. Food Chemistry, 358, 129917. https://doi.org/10.1016/j.foodchem.2021.129917
57. Manzoor, M. F., Siddique, R., Hussain, A., Ahmad, N., Rehman, A., Siddeeg, A., Alfarga, A., Alshammari, G. M., & Yahya, M. A. (2021). Thermosonication effect on bioactive compounds, enzymes activity, particle size, microbial load, and sensory properties of almond (Prunus dulcis) milk. Ultrasonics Sonochemistry, 78, 105705. https://doi.org/10.1016/J.ULTSONCH.2021.105705
58. Manzoor, M., Singh, D., Kumar Aseri, G., Sohal, J. S., Vij, S., & Sharma, D. (2021). Role of lacto-fermentations in reduction of antinutrients in plant-based foods. https://doi.org/10.7324/JABB.2021.9302
59. Martemucci, G., Portincasa, P., Di Ciaula, A., Mariano, M., Centonze, V., & D’Alessandro, A. G. (2022). Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mechanisms of Ageing and Development, 206, 111707. https://doi.org/10.1016/J.MAD.2022.111707
60. Mishra, A., Behura, A., Mawatwal, S., Kumar, A., Naik, L., Mohanty, S. S., Manna, D., Dokania, P., Mishra, A., Patra, S. K., & Dhiman, R. (2019). Structure-function and application of plant lectins in disease biology and immunity. Food and Chemical Toxicology, 134, 110827. https://doi.org/10.1016/J.FCT.2019.110827
61. Mohapatra, D., Patel, A. S., Kar, A., Deshpande, S. S., & Tripathi, M. K. (2019). Effect of different processing conditions on proximate composition, anti-oxidants, anti-nutrients and amino acid profile of grain sorghum. Food Chemistry, 271, 129–135. https://doi.org/10.1016/J.FOODCHEM.2018.07.196
62. Munekata, P. E. S., Domínguez, R., Budaraju, S., Roselló-Soto, E., Barba, F. J., Mallikarjunan, K., Roohinejad, S., & Lorenzo, J. M. (2020). Effect of Innovative Food Processing Technologies on the Physicochemical and Nutritional Properties and Quality of Non-Dairy Plant-Based Beverages. Foods, 9(3), Article 3. https://doi.org/10.3390/foods9030288
63. Mylan, J., Morris, C., Beech, E., & Geels, F. W. (2019). Rage against the regime: Niche-regime interactions in the societal embedding of plant-based milk. Environmental Innovation and Societal Transitions, 31, 233–247. https://doi.org/10.1016/J.EIST.2018.11.001
64. Nath, H., Samtiya, M., & Dhewa, T. (2022). Beneficial attributes and adverse effects of major plant-based foods anti-nutrients on health: A review. Human Nutrition & Metabolism, 28, 200147. https://doi.org/10.1016/j.hnm.2022.200147
65. Nikbakht Nasrabadi, M., Sedaghat Doost, A., & Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118, 106789. https://doi.org/10.1016/j.foodhyd.2021.106789
66. Nissar, J., Ahad, T., & Rashid Naik, H. (2017). A review phytic acid: As antinutrient or nutraceutical Design and development of hand operated and power operated walnut cracker View project Post Harvest Technology View project.
67. Nkhata, S. G., Ayua, E., Kamau, E. H., & Shingiro, J. B. (2018). Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science & Nutrition, 6(8), 2446–2458. https://doi.org/10.1002/FSN3.846
68. Oke, E. K., Ayofemi, S., Adeyeye, O., & Olorode, O. O. (2022). Complementary Foods and Its Processing Methods: A Review. Croatian Journal of Food Science and Technology , 14(1), 5. https://doi.org/10.17508/CJFST.2022.14.1.05
69. Olawoye, B. T., & Gbadamosi, S. O. (2017). Effect of different treatments on in vitro protein digestibility, antinutrients, antioxidant properties and mineral composition of Amaranthus viridis seed. Http://Www.Editorialmanager.Com/Cogentagri, 3(1). https://doi.org/10.1080/23311932.2017.1296402
70. Patra, T., Rinnan, Å., & Olsen, K. (2021). The physical stability of plant-based drinks and the analysis methods thereof. Food Hydrocolloids, 118, 106770. https://doi.org/10.1016/J.FOODHYD.2021.106770
71. Pei, R., Liu, X., & Bolling, B. (2020). Flavonoids and gut health. Current Opinion in Biotechnology, 61, 153–159. https://doi.org/10.1016/J.COPBIO.2019.12.018
72. Penha, C. B., Santos, V. D. P., Speranza, P., & Kurozawa, L. E. (2021). Plant-based beverages: Ecofriendly technologies in the production process. Innovative Food Science & Emerging Technologies, 72, 102760. https://doi.org/10.1016/J.IFSET.2021.102760
73. Petroski, W., & Minich, D. M. (2020). Is There Such a Thing as “Anti-Nutrients”? A Narrative Review of Perceived Problematic Plant Compounds. Nutrients 2020, Vol. 12, Page 2929, 12(10), 2929. https://doi.org/10.3390/NU12102929
74. Popova, A., & Mihaylova, D. (2019). Antinutrients in Plant-based Foods: A Review. The Open Biotechnology Journal, 13(1), 68–76. https://doi.org/10.2174/1874070701913010068
75. Poutanen, K. S., Kårlund, A. O., Gómez-Gallego, C., Johansson, D. P., Scheers, N. M., Marklinder, I. M., Eriksen, A. K., Silventoinen, P. C., Nordlund, E., Sozer, N., Hanhineva, K. J., Kolehmainen, M., & Landberg, R. (2022). Grains – a major source of sustainable protein for health. Nutrition Reviews, 80(6), 1648–1663. https://doi.org/10.1093/nutrit/nuab084
76. Punniyamoorthy, S., Kanchana, S., Maheswari, U., & Ganapathyswamy, H. (2020). Optimization of Parameters for the Extraction of Millet Milk for Product Development.
77. Quattrini, M., Bernardi, C., Stuknytė, M., Masotti, F., Passera, A., Ricci, G., Vallone, L., De Noni, I., Brasca, M., & Fortina, M. G. (2018). Functional characterization of Lactobacillus plantarum ITEM 17215: A potential biocontrol agent of fungi with plant growth promoting traits, able to enhance the nutritional value of cereal products. Food Research International, 106, 936–944. https://doi.org/10.1016/J.FOODRES.2018.01.074
78. Raguindin, P. F., Adam Itodo, O., Stoyanov, J., Dejanovic, G. M., Gamba, M., Asllanaj, E., Minder, B., Bussler, W., Metzger, B., Muka, T., Glisic, M., & Kern, H. (2021). A systematic review of phytochemicals in oat and buckwheat. Food Chemistry, 338, 127982. https://doi.org/10.1016/j.foodchem.2020.127982
79. Rasika, D. M., Vidanarachchi, J. K., Rocha, R. S., Balthazar, C. F., Cruz, A. G., Sant’Ana, A. S., & Ranadheera, C. S. (2021). Plant-based milk substitutes as emerging probiotic carriers. Current Opinion in Food Science, 38, 8–20. https://doi.org/10.1016/j.cofs.2020.10.025
80. Rincon, L., Braz Assunção Botelho, R., & de Alencar, E. R. (2020). Development of novel plant-based milk based on chickpea and coconut. LWT, 128, 109479. https://doi.org/10.1016/J.LWT.2020.109479
81. Rodríguez-España, M., Figueroa-Hernández, C. Y., Figueroa-Cárdenas, J. de D., Rayas-Duarte, P., & Hernández-Estrada, Z. J. (2022). Effects of germination and lactic acid fermentation on nutritional and rheological properties of sorghum: A graphical review. Current Research in Food Science, 5, 807–812. https://doi.org/10.1016/j.crfs.2022.04.014
82. Ruby, M. B. (2012). Vegetarianism. A blossoming field of study. Appetite, 58(1), 141–150. https://doi.org/10.1016/J.APPET.2011.09.019
83. Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production, Processing and Nutrition 2020 2:1, 2(1), 1–14. https://doi.org/10.1186/S43014-020-0020-5
84. Samtiya, M., Aluko, R. E., Puniya, A. K., & Dhewa, T. (2021). Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. Fermentation 2021, Vol. 7, Page 63, 7(2), 63. https://doi.org/10.3390/FERMENTATION7020063
85. Sarangapany, A. K., Murugesan, A., Annamalai, A. S., Balasubramanian, A., & Shanmugam, A. (2022). An overview on ultrasonically treated plant-based milk and its properties – A Review. Applied Food Research, 2(2), 100130. https://doi.org/10.1016/j.afres.2022.100130
86. Schiano, A. N., Nishku, S., Racette, C. M., & Drake, M. A. (2022). Parents’ implicit perceptions of dairy milk and plant-based milk alternatives. Journal of Dairy Science, 105(6), 4946–4960. https://doi.org/10.3168/JDS.2021-21626
87. Sharp, E., D’Cunha, N. M., Ranadheera, C. S., Vasiljevic, T., Panagiotakos, D. B., & Naumovski, N. (2021). Effects of lactose-free and low-lactose dairy on symptoms of gastrointestinal health: A systematic review. International Dairy Journal, 114, 104936. https://doi.org/10.1016/J.IDAIRYJ.2020.104936
88. Silva, A. R. A., Silva, M. M. N., & Ribeiro, B. D. (2020). Health issues and technological aspects of plant-based alternative milk. In Food Research International (Vol. 131). https://doi.org/10.1016/j.foodres.2019.108972
89. Silva, B. Q., & Sergiy, S. (2022). Review on milk substitutes from an environmental and nutritional point of view. Applied Food Research, 100105. https://doi.org/10.1016/J.AFRES.2022.100105
90. Silva, J. G. S., Rebellato, A. P., Caramês, E. T. dos S., Greiner, R., & Pallone, J. A. L. (2020). In vitro digestion effect on mineral bioaccessibility and antioxidant bioactive compounds of plant-based beverages. Food Research International, 130, 108993. https://doi.org/10.1016/J.FOODRES.2020.108993
91. Singhal, S., Baker, R. D., & Baker, S. S. (2017). A Comparison of the Nutritional Value of Cow’s Milk and Nondairy Beverages. Journal of Pediatric Gastroenterology and Nutrition, 64(5), 799–805. https://doi.org/10.1097/MPG.0000000000001380
92. Size and market share of dairy alternatives / 2020-2026 / MarketsandMarkets. (2022). https://www.marketsandmarkets.com/Market-Reports/dairy-alternative-plant-milk-beverages-market-677.html
93. Stewart, H., Kuchler, F., Cessna, J., & Hahn, W. (2020). Are Plant-Based Analogues Replacing Cow’s Milk in the American Diet? Journal of Agricultural and Applied Economics, 52(4), 562–579. https://doi.org/10.1017/AAE.2020.16
94. Suneetha, J., Naga, M., Srujana, S., Kumari, A., & Prathyusha, P. (2019). Processing technologies and health benefits of quinoa. ~ 155 ~ The Pharma Innovation Journal, 8(5), 155–160.
95. Tangyu, M., Muller, J., Bolten, C. J., & Wittmann, C. (2019). Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Applied Microbiology and Biotechnology, 103(23), 9263–9275. https://doi.org/10.1007/s00253-019-10175-9
96. Tello, A., Aganovic, K., Parniakov, O., Carter, A., Heinz, V., & Smetana, S. (2021). Product development and environmental impact of an insect-based milk alternative. Future Foods, 4, 100080. https://doi.org/10.1016/J.FUFO.2021.100080
97. The pros and cons of vegetable milk. (2019). Sbornik Materialov LIII Mezhdunarodnoj Studencheskoj Nauchno-Prakticheskoj Konferencii, 188–193.
98. Tsafrakidou, P., Michaelidou, A.-M., & G. Biliaderis, C. (2020). Fermented Cereal-based Products: Nutritional Aspects, Possible Impact on Gut Microbiota and Health Implications. Foods, 9(6), Article 6. https://doi.org/10.3390/foods9060734
99. Vaikma, H., Kaleda, A., Rosend, J., & Rosenvald, S. (2021). Market mapping of plant-based milk alternatives by using sensory (RATA) and GC analysis. Future Foods, 4, 100049. https://doi.org/10.1016/J.FUFO.2021.100049
100. Vanga, S. K., & Raghavan, V. (2018). How well do plant based alternatives fare nutritionally compared to cow’s milk? In Journal of Food Science and Technology (Vol. 55, Issue 1, pp. 10–20). Springer India. https://doi.org/10.1007/s13197-017-2915-y
101. Verduci, E., D’Elios, S., Cerrato, L., Comberiati, P., Calvani, M., Palazzo, S., Martelli, A., Landi, M., Trikamjee, T., & Peroni, D. G. (2019). Cow’s Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages. Nutrients, 11(8), Article 8. https://doi.org/10.3390/nu11081739
102. Verni, M., Demarinis, C., Rizzello, C. G., & Baruzzi, F. (2020). Design and Characterization of a Novel Fermented Beverage from Lentil Grains. Foods, 9(7), Article 7. https://doi.org/10.3390/foods9070893
103. Wang, H., Huang, X., Tan, H., Chen, X., Chen, C., & Nie, S. (2022). Interaction between dietary fiber and bifidobacteria in promoting intestinal health. Food Chemistry, 393, 133407. https://doi.org/10.1016/J.FOODCHEM.2022.133407
104. Wilson, J. (2005). Milk Intolerance: Lactose Intolerance and Cow’s Milk Protein Allergy. Newborn and Infant Nursing Reviews, 5(4), 203–207. https://doi.org/10.1053/J.NAINR.2005.08.004
105. Xiang, H., Sun-Waterhouse, D., Waterhouse, G. I. N., Cui, C., & Ruan, Z. (2019). Fermentation-enabled wellness foods: A fresh perspective. Food Science and Human Wellness, 8(3), 203–243. https://doi.org/10.1016/j.fshw.2019.08.003
106. Yadav, S., Mishra, S., & Pradhan, R. C. (2021). Ultrasound-assisted hydration of finger millet (Eleusine Coracana) and its effects on starch isolates and antinutrients. Ultrasonics Sonochemistry, 73, 105542. https://doi.org/10.1016/j.ultsonch.2021.105542
107. Ziarno, M., & Cichońska, P. (2021). Lactic Acid Bacteria-Fermentable Cereal- and Pseudocereal-Based Beverages. Microorganisms 2021, Vol. 9, Page 2532, 9(12), 2532. https://doi.org/10.3390/MICROORGANISMS9122532
108. Babiker, E., Abdel'sid, B., Hassan, H., & Adiamo, O. (2018). Effect of decortication methods on the chemical composition, antinutrients, Ca, P and Fe contents of two pearl millet cultivars during storage. World Journal of Science, Technology and Sustainable Development, 15(3), 278–286. https://doi.org/10.1108/WJSTSD-01-2018-0005
109. Galstyan, A. G., Aksyonova, L. M., Lisicyn, A. B., Oganesyanc, L. A., & Petrov, A. N. (2019). Sovremennye podhody k hraneniyu i effektivnoj pererabotke sel'skohozyajstvennoj produkcii dlya polucheniya vysokokachestvennyh pishchevyh produktov. Vestnik Rossijskoj Akademii Nauk, 89(5). https://doi.org/10.31857/S0869-5873895539-542
110. Dzhuraeva N.R., Isabaev I. B. (2020). Analiz tekhnologicheskogo effekta i funkcional'noj napravlennosti natural'nogo syr'ya dlya proivodstva konditerskih izdelij. Materialy XIII Mezhdunarodnoj Nauchno-Tekhnicheskoj Konferencii, 220–221.
111. Dulov M.I. (2019). Mineral'nyj sostav zerna sortov i linij ovsa golozernogo v lesostepi Povolzh'ya. INNOVACIONNOE RAZVITIE NAUKI I OBRAZOVANIYA 61 VII, 61–68.
112. Egorova, E. YU. (2019). «Nemolochnoe Moloko»: Obzor Syr'ya I Tekhnologij. Polzunovskij Vestnik, 18(3), 25–34. https://doi.org/10.25712/astu.2072-8921.2018.03.005
113. Komarova, O. N., Havkin A. I. (2017). The role of cereals in human nutrition . Voprosy Detskoj Dietologii, 45–51. https://doi.org/10.20953/1727-5784-2017-4-45-51
114. Krysanova, YU. I. (2022). K voprosu o metodah ocenki koncentracii molochnogo sahara v nizko- i bezlaktoznoj produkcii. Pishchevaya Promyshlennost', 8. https://doi.org/10.52653/PPI.2022.8.8.017
115. Serebrennikova, E.S., Anisimova, L. V., Popov E. V., Zemerov A. E. (2019). Kachestvo zernovogo sorgo. Sbornik Trudov Konferencii. https://elibrary.ru/download/elibrary_41569182_18586861.pdf
116. Haritonov, V. D., Agarkova, E. YU., Kruchinin, A. G., Ryazanceva, K. A., Koroleva, O. V., Fedorova, T. V., Zvereva, E. A., Tyazhelova, T. V., Maloshenok, L. G., Revyakina, V. A., Georgieva, O. V., Ponomareva, N. V., Mel'nikova, E. I., Laptev, G. YU., & Il'ina, L. A. (2015). Vliyanie novogo kislomolochnogo produkta s gidrolizatom syvorotochnyh belkov na perenosimost' i dinamiku proyavlenij atopicheskogo dermatita u detej s allergiej na belki korov'ego moloka. Voprosy Pitaniya, 84(5). https://www.elibrary.ru/item.asp?id=24336061
117. Haritonov, V. D., Budrik, V. G., Agarkova, E. YU., Botina, S. G., Berezkina, K. A., Kruchinin, A.G., Ponomarev, A.N., & Mel'nikova, E. I. (2012). K Voprosu O Perspektivnyh Napravleniyah Bor'by S Allergiej. Tekhnika I Tekhnologiya Pishchevyh Proizvodstv, 4 (27). https://www.elibrary.ru/item.asp?id=18208062
118. Hurshudyan, S. A., & Semenenko, N. T. (2013). Resursosberegayushchie tekhnologii i innovacionnye zadachi v proizvodstve napitkov. Pishchevaya Promyshlennost', 7. https://www.elibrary.ru/item.asp?id=19426227
Review
For citations:
Strizhko M.N. Antinutrients in Grain-Based Plant Drinks: Scoping Review. FOOD METAENGINEERING. 2023;1(1). (In Russ.) https://doi.org/10.37442/fme.2023.1.3