The Ultraviolet Radiation Influence on the Physical-Mechanical and Structural Characteristics of a Biodegradable Polymeric Material Based on Polylactide and Poly(butylene adipate-co-terephthalate) during Compost Storage
https://doi.org/10.37442/fme.4.27
Abstract
Introduction: The use of biodegradable packaging as an alternative to traditional polymer materials will reduce the amount of synthetic polymers, leading to a decrease in negative environmental impact. Research in this direction is mainly focused on analyzing the rate of degradation of such materials. However, the influence of external factors on degradable plastics, such as radiation, thermal or ultrasonic treatment, before composting storage, is insufficiently studied.
Purpose: To study the impact of ultraviolet (UV) radiation on the changes in the physical-mechanical and morphological properties of a biodegradable compound material based on polylactide (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) during laboratory compost storage.
Materials and Methods: The purpose of the research was biodegradable polymer films based on a mixture of PLA and PBAT. Changes in strength indicators were conducted according to GOST 14236-2017. Particle size was determined by the bright field method on an Axio Lab. A1 microscope with Axiocam 105 color optics. IR spectra registration was performed on a macro module of the IR-Fourier spectrometer-microscope Bruker Lumos (Germany). Surface analysis of the samples was conducted on a Vega 3 scanning electron microscope (Tescan, Czech Republic).
Results: Irradiation of the material before placement in the soil leads to an acceleration of the degradation process: the strength at break of the material decreases by 23.3% faster, and the strength of the welded seams decreases by 70.0%. The analysis of the surface structure of the material after 120 days of storage in compost showed significant changes: numerous cracks were observed on the surface, extending deep into the material almost across the entire surface.
Conclusion: The obtained data on the change in the surface structure of the samples after exposure to UV radiation indicates dynamically occurring decomposition processes, creating a real perspective for minimizing environmental risks in the segment of environmental protection related to packaging disposal.
Keywords: biodegradable materials, destruction, ultraviolet, composting
About the Authors
Dmitriy Mikhailovich MyalenkoAll-Russian Dairy Research Institute
Russian Federation
Head of Packaging Sector, Senior Researcher, Candidate of Technical Sciences
Olga Borisovna Fedotova
All-Russian Dairy Research Institute
Russian Federation
Scientific Secretary, Leading Researcher, Doctor of Technical Sciences
Aleksand Aleksandrovich Agarkov
Russian Federation
Junior Researcher, Candidate of Technical Sciences
References
1. Ailes A., et all. (2013). Expanding Bioplastics: Sustainable Business Innovation in the Chemical Industry. Pure. Prod, 45, 38–49.
2. Aversa, C., Barletta, M., Cappiello, G., & Gisario, A. (2022). Compatibilization strategies and analysis of morphological features of poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: A state-of-art review. European Polymer Journal, 173, 111304. https://doi.org/10.1016/J.EURPOLYMJ.2022.111304
3. Barron, A., & Sparks, T. D. (2020). Commercial Marine-Degradable Polymers for Flexible Packaging. IScience, 23(8). https://doi.org/10.1016/J.ISCI.2020.101353
4. Bocchini, S., Fukushima, K., Blasio, A. Di, Fina, A., Frache, A., & Geobaldo, F. (2010). Polylactic Acid and Polylactic Acid-Based Nanocomposite Photooxidation. Biomacromolecules, 11(11), 2919–2926. https://doi.org/10.1021/bm1006773
5. Brdlík, P., Borůvka, M., Běhálek, L., & Lenfeld, P. (2022). The Influence of Additives and Environment on Biodegradation of PHBV Biocomposites. Polymers, 14(4), 838. https://doi.org/10.3390/polym14040838
6. Dammak, M., Fourati, Y., Tarrés, Q., Delgado-Aguilar, M., Mutjé, P., & Boufi, S. (2020). Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability. Industrial Crops and Products, 144, 112061. https://doi.org/10.1016/J.INDCROP.2019.112061
7. Dilkes-Hoffman, L. S., Lant, P. A., Laycock, B., & Pratt, S. (2019). The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study. Marine Pollution Bulletin, 142, 15–24. https://doi.org/10.1016/J.MARPOLBUL.2019.03.020
8. Dobrov, E. N., Arbieva, Z. K., Timofeeva, E. K., Esenaliev, R. O., Oraevsky, A. A., & Nikogosyan, D. N. (1989). UV Laser induced rna-protein crosslinks and rna chain breaks in tobacco mosaic virus RNA in situ. Photochemistry and Photobiology, 49(5), 595–598. https://doi.org/10.1111/j.1751-1097.1989.tb08429.x
9. Gardette, M., Thérias, S., Gardette, J.-L., Murariu, M., & Dubois, P. (2011). Photooxidation of polylactide/calcium sulphate composites. Polymer Degradation and Stability, 96(4), 616–623. https://doi.org/10.1016/j.polymdegradstab.2010.12.023
10. Gewert, B., Plassmann, M., Sandblom, O., & Macleod, M. (2018). Identification of Chain Scission Products Released to Water by Plastic Exposed to Ultraviolet Light. Environmental Science and Technology Letters, 5(5), 272–276. https://doi.org/10.1021/ACS.ESTLETT.8B00119/ASSET/IMAGES/MEDIUM/EZ-2018-00119J_0002.GIF
11. Janczak, K., Dąbrowska, G. B., Raszkowska-Kaczor, A., Kaczor, D., Hrynkiewicz, K., & Richert, A. (2020). Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants. International Biodeterioration & Biodegradation, 155, 105087. https://doi.org/10.1016/J.IBIOD.2020.105087
12. Janorkar, A. V., Metters, A. T., & Hirt, D. E. (2007). Degradation of poly(L-lactide) films under ultraviolet-induced photografting and sterilization conditions. Journal of Applied Polymer Science, 106(2), 1042–1047. https://doi.org/10.1002/app.24692
13. Jian, J., Xiangbin, Z., & Xianbo, H. (2020). An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Advanced Industrial and Engineering Polymer Research, 3(1), 19–26. https://doi.org/10.1016/J.AIEPR.2020.01.001
14. Kale, G., Auras, R., & Singh, S. P. (2007). Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions. Packaging Technology and Science, 20(1), 49–70. https://doi.org/10.1002/PTS.742
15. Kale, G., Auras, R., Singh, S. P., & Narayan, R. (2007). Biodegradability of polylactide bottles in real and simulated composting conditions. Polymer Testing, 26(8), 1049–1061. https://doi.org/10.1016/j.polymertesting.2007.07.006
16. Kalita, N. K., Bhasney, S. M., Mudenur, C., Kalamdhad, A., & Katiyar, V. (2020). End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions. Chemosphere, 247, 125875. https://doi.org/10.1016/J.CHEMOSPHERE.2020.125875
17. Kiruthika, A. V. (2022). PHBV based blends and composites. In Biodegradable Polymers, Blends and Composites (pp. 283–308). Elsevier. https://doi.org/10.1016/B978-0-12-823791-5.00008-9
18. Lee, J., Maddipatla, M. V. S. N., Joy, A., & Vogt, B. D. (2014). Kinetics of UV irradiation induced chain scission and cross-linking of coumarin-containing polyester ultrathin films. Macromolecules, 47(9), 2891–2898. https://doi.org/10.1021/MA500328R/SUPPL_FILE/MA500328R_SI_001.PDF
19. Lunt, J. (1998). Large-scale production, properties and commercial applications of polylactic acid polymers . Polym. Degrad. Stab., 59, 145–152. https://doi.org/10.1016/S0141-3910(97)00148-1
20. Miranda, T. M. R., Gonçalves, A. R., & Amorim, M. T. P. (2001). Ultraviolet-induced crosslinking of poly(vinyl alcohol) evaluated by principal component analysis of FTIR spectra. Polymer International, 50(10), 1068–1072. https://doi.org/10.1002/pi.745
21. Oster, G., Oster, G. K., & Moroson, H. (1959). Ultraviolet induced crosslinking and grafting of solid high polymers. Journal of Polymer Science, 34(127), 671–684. https://doi.org/10.1002/pol.1959.1203412744
22. Ponjavic, M., Malagurski, I., Lazic, J., Jeremic, S., Pavlovic, V., Prlainovic, N., Maksimovic, V., Cosovic, V., Atanase, L. I., Freitas, F., Matos, M., & Nikodinovic-Runic, J. (2023). Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin. International Journal of Molecular Sciences, 24(3), 1906. https://doi.org/10.3390/ijms24031906
23. Puchalski, M., Szparaga, G., Biela, T., Gutowska, A., Sztajnowski, S., & Krucińska, I. (2018). Molecular and Supramolecular Changes in Polybutylene Succinate (PBS) and Polybutylene Succinate Adipate (PBSA) Copolymer during Degradation in Various Environmental Conditions. Polymers 2018, Vol. 10, Page 251, 10(3), 251. https://doi.org/10.3390/POLYM10030251
24. Reichert, C. L., Bugnicourt, E., Coltelli, M. B., Cinelli, P., Lazzeri, A., Canesi, I., Braca, F., Martínez, B. M., Alonso, R., Agostinis, L., Verstichel, S., Six, L., De Mets, S., Gómez, E. C., Ißbrücker, C., Geerinck, R., Nettleton, D. F., Campos, I., Sauter, E., Pieczyk, P., Schmid, M. (2020). Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers 2020, Vol. 12, Page 1558, 12(7), 1558. https://doi.org/10.3390/POLYM12071558
25. Tertyshnaya, Y. V., & Podzorova, M. V. (2020). Effect of UV Irradiation on the Structural and Dynamic Characteristics of Polylactide and Its Blends with Polyethylene. Russian Journal of Physical Chemistry B, 14(1), 167–175. https://doi.org/10.1134/S1990793120010170
26. Van den Oever, M., & Molenveld, K. (2017). Replacing fossil based plastic performance products by bio-based plastic products—Technical feasibility. New Biotechnology, 37, 48–59. https://doi.org/10.1016/j.nbt.2016.07.007
27. Van Velzen, at all. (2016). Recycling Efficiency of Used Plastic Packaging. Proceedings of the 32nd International Conference of the Society for the Processing of Polymers, Lyon, France, July 25-29,.
28. Wang, L., Xu, J., Zhang, M., Zheng, H., & Li, L. (2022). Preservation of soy protein-based meat analogues by using PLA/PBAT antimicrobial packaging film. Food Chemistry, 380, 132022. https://doi.org/10.1016/j.foodchem.2021.132022
29. Weng, Y. X., Jin, Y. J., Meng, Q. Y., Wang, L., Zhang, M., & Wang, Y. Z. (2013). Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polymer Testing, 32(5), 918–926. https://doi.org/10.1016/J.POLYMERTESTING.2013.05.001
30. Yousif, B. F. (2013). Editorial for SI: Materials, design and tribology. Materials & Design, 48, 1. https://doi.org/10.1016/j.matdes.2013.01.009
31. Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: Review. SpringerPlus, 2(1), 1–32. https://doi.org/10.1186/2193-1801-2-398/FIGURES/49
32. Garifulina, L.I., Li, N. I., Garipov, R. M., & Minnakhmetova, A. K. (2019). Biodegradation of polymer film materials (review). Bulletin of the Technological University, 22 (1), 47-53.
33. Zaikov G.E.; Abdel-Bari E.M. (2010). Polymer films. Production technologies, destruction and stabilization, application, recycling: Profession, 352.
34. Zaikov G.E. (2000). Why polymers age. Soros Educational Journal, 12, 48-55.
35. Kobzeva T.V., Yurova E. A. (2016). Evaluation of quality indicators and identification characteristics of milk powder. Dairy Industry, 3, 32-35.
36. Kruchinin A.G., Illarionova E.E., Turovskaya S.N., & Bigaeva, A.V. (2023). Investigation of the effect of the protein profile on the structural and mechanical parameters of dairy biosystems with intermediate humidity. Food Processing Industry, 1, 59–62. https://doi.org/10.52653/PPI.2023.1.1.017
37. Olkhov.A.A. (2015). Promising biomaterials based on polyhydroxybutyrate and double ethylene propylene phosphopolymer for the transport of physiological media: phase structure. Perspective Materials, 10, 56-63.
38. Pryanichnikova N.S. (2020). Protective coatings for food products. Modern Achievements Of Biotechnology. Equipment, Technologies and Packaging For The Implementation Of Innovative Projects At The Enterprises Of The Food and Biotechnology Industry Materials Of the VII International Scientific and Practical Conference. Pyatigorsk, 86-89.
39. Pryanichnikova N.S. (2020). Edible packaging: transport for functional and bioactive compounds. Milk River, 4 (80), 32-34.
40. Radaeva I.A., Radaeva, I. A., Illarionova, E. E., Turovskaya, S. N., Ryabova, A. E., & Galstyan, A. G. (2019). Principles of quality assurance of domestic milk powder. Food Industry, 9, 54-57. http://doi.org/10.24411/0235-2486-2019-10145
41. Salikov P.Yu. (2014). Pyrolysis disposal of used polyethylene terephthalate products. Ecology and Industry of Russia, 3, 16-20.
42. Filchakova S. A. (2008). Sanitation and hygiene in the dairy industry (Delhi print), 277.
43. Filchakova S.A. (2008). Microbiological purity of packaging for dairy products. Dairy Industry, 7, 44-46.
44. Yurova E.A. (2019). Evaluation of the quality and storage capacity of functional dairy products. Milk Branch Magazine, 10, 6–11. https://doi.org/10.33465/2222-5455-2019-10-6-10
45. Yurova E.A. (2020). The peculiarity of determining the content of vitamin E (tocopherols) in functional dairy products. Food Security, 12, 36-39. http://doi.org/10.24411/0235-2486-2020-10141
Review
For citations:
Myalenko D.M., Fedotova O.B., Agarkov A.A. The Ultraviolet Radiation Influence on the Physical-Mechanical and Structural Characteristics of a Biodegradable Polymeric Material Based on Polylactide and Poly(butylene adipate-co-terephthalate) during Compost Storage. FOOD METAENGINEERING. 2023;1(4). (In Russ.) https://doi.org/10.37442/fme.4.27