Влияние компонентов пальмового масла на характер обмена веществ в организме человека
https://doi.org/10.37442/fme.2023.4.13
Аннотация
Введение: В настоящее время спрос на растительные масла растет во всем мире и пальмовое масло вносит значительный вклад в глобальные поставки пищевых масел. Последние несколько десятилетий наблюдается растущее общественное беспокойство по поводу значительного взаимодействия между здоровьем и питанием и в частности пальмовым маслом (ПМ).
Цель: анализ влияния компонентов ПМ на характер обмена веществ в организме человека и развитие патологических состояний.
Материалы и методы: Поиск литературы по проблеме заосуществляли по базам данных РИНЦ, Google Scholar, Rese PubMed по ключевым словам и словосочетаниям: «пальмовое масло», «здоровье человека», «сахарный диабет», «ожирение», «сердечно-сосудистые заболевания», «онкология», «детское питание»
Результаты: Даны общие сведения о ПМ в пищевой промышленности. Несмотря на хорошее качество пальмоядрового масла и его полезные свойства, пищевая промышленность требует другой продукт – ПМ светлого цвета. Это предполагает его обязательную очистку с помощью химической обработки (щелочью или кислотой) или физическими методами. Дезодорированное ПМ с низким содержанием примесей и хорошо отбеленное считается продуктом высокого качества для пищевой промышленности. Оно содержит 50% насыщенных жирных кислот (пальмитиновая, стеариновая, 40% мононенасыщенных (олеиновая) и 10% полиненасыщенных жирных кислот (линолевая). В 2022 г. ПМ было произведено 76,039 млн. метрических тонн или 36% от общего количества всех масел, производимых в мире. Применение рафинированного ПМ в пищевой промышленности растет в геометрической прогрессии ввиду потребительских свойств этого продукта: текстуры, аромата и нейтрального вкуса. Различные фракции ПМ по-разному используются в пищевой промышленности. Пальмовый олеин используется для жарки и при производстве маргаринов, cпредов, майонеза, мороженого растительных сливок. Пальмовый стеарин входит в состав кондитерских жиров и используется для производства хлебобулочных изделий, конфет, тортов, сыра, чипсов, шоколада, печенья, крекеров, пончиков, замороженных блюд, лапши быстрого приготовления, попкорна, заправок для салатов, закусок, супов.
Клинические и экспериментальные исследования последних лет свидетельствуют о том, что ПМ может стать причиной развития инсулинорезистентности (диабет 2-го типа (СД-2)) и метаболических нарушений, включая ожирение, ишемическую болезнь сердца, инсульт, а также различных онкозаболеваний. Поэтому, ряд диетических рекомендаций США и ЕС направлены на ограничение потребления ПМ в пищевых продуктах. Однако, данные эпидемиологических исследований, проведенных в различных странах мира достаточно противоречивы. Это говорит о том, что оценке влияния ПМ на здоровье в первую очередь необходимо учитывать этногенетические особенности, а также национальные традиции питания. Российские ученые и зарубежные ученые, основываясь на результатах клинических исследований, делают вывод о том, что ПМ как жировой компонент детских смесей негативным образом влияет на обмен Са2+ в кишечнике грудных детей. Поэтому, следует ограничить использование ПМ, в качестве компонента заменителей грудного молока в детских смесях и использовать другие компоненты, в частности смеси с β-пальмитатом или молочный жир.
Выводы: Приведены общие сведения о ПМ в пищевой промышленности. Показана роль ПМ и пальмитиновой кислоты в развитии ожирения и СД-2, в развитии сердечно-сосудистых заболеваний, а также в возникновении онкологических заболеваний. Охарактеризованы возможности использования ПМ в детском питанию. Дано мнение белорусских и российских ученых о влиянии ПМ на здоровье человека.
Ключевые слова
Об авторах
Валерий Викентьевич ШиловБеларусь
кандидат биологических наук, доцент кафедры экологической медицины и радиобиологии
Владимир Владимирович Литвяк
Россия
Ведущий научный сотрудник. Гражданин Республики Беларусь. Работаю в России.
Научные интересы: пищевая технология, биохимия, химия, физика
Юрий Федорович Росляков
Россия
доктор технических наук, профессор, профессор кафедры пищевой инженерии
Список литературы
1. Амелюшкина, В. А., Рожкова, Т. А., & Титов, В. Н. (2013). Пальмитиновый и олеиновый варианты метаболизма жирных кислот. Экзогенный синдром резистентности к инсулину при нарушении биологической функции питания. Клиническая лабораторная диагностика, 7, 21–28.
2.
3. Бибик, Е. Ю., & Гайворовская, Ю. В. (2015). Влияние избыточного потребления пальмового масла на органометрические показатели тимуса в различные периоды онтогенеза. Educatio, 9(16), 48–52.
4.
5. Верткин, А. Л., & Прохорович, Е. А. (2013). Пальмовое масло в составе заменителей грудного молока. Обзор клинических исследований. Медицинский совет, 8, 111–113. https://doi.org/10.21518/2079–701X-2013–8-110–113
6.
7. Кирко, С. Р., Гуринович, В. А., Лукиенко, Е. П., Мойсеенок, А. Г., & Буко, В. У. (2017). Сравнительная характеристика жирнокислотного состава печени крыс при включении в рацион рапсового и пальмового масел. Известия НАН Беларуси. Серия медицинских наук, 1, 29–37.
8.
9. Литвяк, В. С., & Литвяк, В. В. (2015). Строение материи: волновая и корпускулярная теории. Минск: ИВЦ Минфина.
10.
11. Литвяк, В. С., & Литвяк, В. В. (2018). Волновое и корпускулярное строение материи-антиматерии: роль и значение пустоты в структуре (в 2-х ч.). Минск: ИВЦ Минфина.
12.
13. Медведев, О. С., & Медведева, Н. А. (2016). Современные представления о возможном влиянии пальмового масла на здоровье человека. Вопросы питания, 85(1), 5–18.
14.
15. Санникова, Н. Е., Стенникова, О. В., Бородулина, Т. В., & Левчук, Л. В. (2013). Жировой компонент адаптированных детских молочных смесей: Cовременное состояние и история вопроса. Русский медицинский журнал, 2, 115.
16.
17. Сокольский, И. (2015). Правда о пальмовом масле. Наука и жизнь, 4, 102–105.
18.
19. Степычева, Н. В., Васина, Н. А., & Куликова, А. А. (2018). Оценка влияния пальмового масла на развитие атеросклероза и атероматоза. Современные научные исследования и инновации, (1).
20.
21. Янковская, Л. В., Кежун, Л. П., Слободская, Н. С., Белоус, Ю.И., Моргунова, Е.М. (2016). Влияние пальмового масла на риск развития сердечно-сосудистых заболеваний. Журнал Гродненского государственного медицинского университета, 4, 6–11.
22.
23. Ajuwon, K. M., & Spurlock, M. E. (2005).β activates the NF-κB transcription factor and induces IL-6 and TNF-α expression in 3T3-L1 adipocytes. Journal of Nutrition, 135, 1841–1846. https://doi.org/10.1093/jn/135.8.1841
24. Alarcon, P. A., Tressler, R. L., Mulvaney, A., Lam, W., & Comer, G. M. (2002). Gastrointestinal tolerance of a new infant milk formula in healthy babies: an international study conducted in 17 countries. Nutrition, 18(6), 484–489.
25. https://doi.org/10.1016/s0899–9007(02)00752–9
26. Alexander J., Barregard L., Bignami M., Ceccatelli S., Cottrill B., Dinovi M., Edler L., Grasl-Kraupp B., Hogstrand C., Hoogenboom L., Knutsen H. K., Nebbia C. S., Oswald I., Petersen A., Rogiers V. M., Rose M., Roudot A.-C., Schwerdtle T., Vleminckx C., Vollmer G., Wallace Н. (2016). Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. European Food Safety Authority, 14(5), 4426. https://doi.org/10.2903/j.efsa.2016.4426
27. Aranceta, J., & Perez-Rodrigo, C. (2012). Recommended dietary reference intakes, nutritional goals and dietary guidelines for fat and fatty acids: A systematic review. British Journal of Nutrition, 107, 8–22.
28. https://doi.org/10.1017/S0007114512001444
29. Ariyama, H., Kono, N., Matsuda, S.T., & Inoue, H. (2010). Decrease in membrane phospholipid unsaturation induces unfolded protein response. Journal of Biological Chemistry, 285, 22027–22035. https://doi.org/10.1074/jbc.M110.126870
30. Assmann, G., Buono, P., Daniele, A., Valle, E. D., Farinaro, E., Ferns, G., Krogh, V., Kromhout, D., Masana, L., Merino, J., Misciagna, G., Panico, S., Riccardi, G., Rivellese, A. A., Rozza, F., Salvatore, F., Salvatore, V., Stranges, S., Trevisan, M., Trimarco, B., & Vetrani, C. (2014). Functional foods and cardiometabolic diseases / International Task Force for Prevention of Cardiometabolic Diseases. Nutrition, Metabolism & Cardiovascular Diseases, 24, 1272–1300. https://doi.org/10.1016/j.numecd.2014.10.010
31. Barker, D. J. (2004). The developmental origins of adult disease. Journal of the American College of Nutrition, 23, 588–595. https://doi.org/10.1080/07315724.2004.10719428
32. Berger, N. A. (2014) Obesity and cancer pathogenesis. Annals New York Academy of Sciences, 1311, 57–76.
33. https://doi.org/10.1111/nyas.12416
34. Bartsch, H., Nair, J., & Owen, R. W. (1999). Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: Emerging evidence for their role as risk modifiers. Carcinogenesis, 20, 2209–2218. https://doi.org/10.1093/carcin/20.12.2209
35. Bester, D., Esterhuyse, A., Truter, E. J., & van Rooyen, J. (2010). Cardiovascular effects of edible oils: A comparison between four popular edible oils. Nutrition Research Reviews, 23, 334–348. https://doi.org/10.1017/S0954422410000223
36. Bongers, M. E., de Lorijn, F., Reitsma, J. B., Groeneweg, M., Taminiau, J. A. J. M., & Benninga, M. A. (2007). The clinical effect of a new infant formula in term infants with constipation: A double–blind, randomized cross–over trial. Nutrition Journal, 11, 6–8. https://doi.org/10.1186/1475–2891-6–8
37. Bradley, R. L., Fisher, F. F., & Maratos-Flier, E. (2008). Dietary fatty acids differentially regulate production of TNF-α and IL-10 by murine 3T3-L1 adipocytes. Obesity, 16, 938–944. https://doi.org/10.1038/oby.2008.39
38. Bosworth, A. W., Bowditch, H. I., & Giblin, L. A. (1918). Studies of infant feeding. X: The digestion and absorption of fats. I. Calcium in its relation to the absorption of fatty acids. Archives of Pediatrics and Adolescent Medicine, 15(6), 397–407. https://doi.org/10.1001/ARCHPEDI.1918.04110240026002
39. Brouwer, I. A., Katan, M. B., & Zock, P. L. (2004). Dietary α-linolenic acidis associated with reduced risk of fatal coronary heart disease, but increased prostate cancer risk: A meta-analysis. Nutrition Journal, 134, 919–922.
40. https://doi.org/10.1093/jn/134.4.919
41. Byrne, M. E. O’Mahony, J. A, &. O’Callaghan, T. F. (2021). Compositional and functional considerations. for bovine-, caprine- and plant-based infant formulas. Dairy, 2(4), 695–715. https://doi.org/10.3390/dairy2040054
42. Calder, P. C. (1999). Dietary fatty acids and the immune system. Lipids, 34, 137–140. https://doi.org/10.1007/BF02562264
43. Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget ,A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J.-F., Gibson, G. R., Casteilla, L., Delzenne, N. M., Alessi, M. C., & Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56, 1761–1772. https://doi.org/10.2337/db06–1491
44. Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., & Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 57, 1470–1481. https://doi.org/10.2337/db07–1403
45. Carnielli, V. P., Luijendijk, I. H., Van Goudoever, J. B., Sulkers, E. J., Boerlage, A. A., Degenhart, H. J., & Sauer, P. J. (1995). Feeding premature newborn infants palmitic acid in amounts and stereoisomeric position similar to that of human milk: Effects on fat and mineral balance. American Journal of Clinical Nutrition, 61(5), 1037–1042. https://doi.org/10.1093/ajcn/61.4.1037
46. Carnielli, V. P., Luijendijk, I. H., Van Goudoever, J. B., Sulkers, E. J., Boerlage, A. A., Degenhart, H. J., & Sauer, P. J. (1996). Structural position and amount of palmitic acid in infant formulas: Effects on fat, fatty acid, and mineral balance. Journal of Pediatric Gastroenterology & Nutrition, 23(5), 553–560.
47. https://doi.org/10.1097/00005176–199612000-00007
48. Chen, B. K., Seligman, B., Farquhar, J. W., &Goldhaber-Fiebert, J. D. (2011). Multi-Country analysis of palm oil consumption and cardiovascular disease mortality for countries at different stages of economic development: 1980–1997. Globalization and Health, 7, 45–54.
49. https://doi.org/10.1186/1744–8603-7–45
50. Cheng, L., Yu Y., Szabo, A., Wu, Y., Wang, H., Camer, D., & Huang, X.-F. (2015). Palmitic acid induces central leptin resistance and impairs hepatic glucose and lipid metabolism in male mice. Journal of Nutritional Biochemistry, 26, 541–548. https://doi.org/10.1016/j.jnutbio.2014.12.011
51. Clandinin, M. T., Cook, S. L., Konrad, S. D., & French, M. A. (2000). The effect of palmitic acid on lipoprotein cholesterol levels. International Journal of Food Sciences and Nutrition, 51, 61–S71.
52. Clandinin, M. T., Cook, S. L., Konrad, S. D., Goh, Y. K., & French, M. A. (1999). The effect of palmitic acid on lipoprotein cholesterol levels and endogenous cholesterol synthesis in hyperlipidemic subjects. Lipids, 34, 121–124.
53. https://doi.org/10.1007/BF02562257
54. Clarke, R., Frost, C., Collins, R., Appleby, P., Peto, R. (1997). Dietary lipids and blood cholesterol: Quantitative meta-analysis of metabolic ward studies. BMJ, 314, 112–117. https://doi.org/10.1136/bmj.314.7074.112
55. Crowe, F. L., Allen, N. E., Appleby, P. N., Overvad, K., Aardestrup, I. V., Johnsen, N. F., Tjønneland, A., Linseisen, J., Kaaks, R., Boeing, H., Kröger, J., Trichopoulou, A., Zavitsanou, A., Trichopoulos, D., Sacerdote, C., Palli, D., Tumino, R., Agnoli, C., Kiemeney, L. A., Bueno-de-Mesquita, H. B., Chirlaque, María-Dolores, Ardanaz, E., Larrañaga, N., Quirós, J. R., Sánchez, Maria-José, González, C. A., Stattin, P., Hallmans, G., Bingham, S., Khaw, Kay-Tee, Rinaldi, S., Slimani, N., Jenab, M., Riboli, E., & Key, T. J. (2008). Fatty acid composition of plasma phospholipids and risk of prostate cancer in a case-control analysis nested within the European Prospective Investigation into Cancer and Nutrition. American Journal of Clinical Nutrition, 88, 1353–1363. https://doi.org/10.3945/ajcn.2008.26369
56. Čmolík, J., Pokorný, J. (2000). Physical refining of edible oils. European Journal of Lipid Science and Technology, 102, 472–486. https://doi.org/10.1002/1438–9312(200008)102:7<472::AID-EJLT472>3.0.CO;2-Z
57. Daniele, A., Cammarata, R., Pasanisi, F., Finelli, C., Salvatori, G., Calcagno, G., Bracale, R., Labruna, G., Nardelli, C., Buono, P., Sacchetti, L., Contaldo, F., & Oriani, G. (2008). Molecular analysis of the adiponectin gene in severely obese patients from southern Italy. Annals of Nutrition and Metabolism, 53, 155–161. https://doi.org/10.1159/000172976
58. De Rosa, A., Monaco, M. L., Capasso, M., Forestieri, P., Pilone, V., Nardelli, C., Buono, P., & Daniele, A. (2013). Adiponectin oligomers as potential indicators of adipose tissue improvement in obese subjects. European Journal of Endocrinology, 169, 37–43. https://doi.org/10.1530/EJE-12–1039
59. De Wit, N., Derrien, M., Bosch-Vermeulen, H., Oosterink, E., Keshtkar, S., Duval, C., Van den Bosch, J. V., Kleerebezem, M., Müller, M., & Van der Meer, R. (2012). Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. American Journal of Physiology. Gastrointestinal and Liver Physiology, 303, 589–599. https://doi.org/10.1152/ajpgi.00488.2011
60. Diakogiannaki, E., Welters, H. J., & Morgan, N. G. (2008). Differential regulation of the endoplasmic reticulum stress response in pancreatic beta-cells exposed to long-chain saturated and monounsaturated fatty acids. Journal of Endocrinology, 197, 553–563. https://doi.org/10.1677/JOE-08–0041
61. Dixon, J. B. (2010). The effect of obesity on health outcomes. Molecular and Cellular Endocrinology, 316, 104–108. https://doi.org/10.1016/j.mce.2009.07.008
62. Dunford, N. T. (2012). Advancements in oil and oilseed processing. In Food and Industrial Bioproducts and Bioprocessing (pp. 115–143). John Wiley and Sons Inc. https://doi.org/10.1002/9781119946083.ch4
63. Edem, D. O. (2002). Palm Oil: Biochemical, physiological, nutritional, hematological, and toxicological aspects: A review. Plant Foods for Human Nutrition, 57, 319–341. https://doi.org/10.1023/a:1021828132707
64. Escrich, E., Solanas, M., Moral, R., Costa, I., & Grau, L. (2006). Are the olive oil and other dietary lipids related to cancer? Experimental evidence. Clinical and Translational Oncology, 8, 868–883.
65. https://doi.org/10.1007/s12094–006-0150–5
66. Escrich, E., Solanas, M., Moral, R., &bEscrich, R. (2011). Modulatory effects and molecular mechanisms of olive oil and other dietary lipids in breast cancer. Current Pharmaceutical Design, 17, 813–830. https://doi.org/10.2174/138161211795428902
67. Exley, M.A., Hand, L., O’Shea, D., & Lynch, L. (2014). Interplay between the immune system and adipose tissue in obesity. Journal of Endocrinology, 223, 41–48. https://doi.org/10.1530/JOE-13–0516
68. Fattore, E., Bosetti, C., Brighenti, F., Agostoni, C., & Fattore, G. (2014). Palm oil and blood lipid-related markers of cardiovascular disease: A systematic review and meta-analysis of dietary intervention trials. American Journal of Clinical Nutrition, 99, 1331–1350. https://doi.org/10.3945/ajcn.113.081190
69. Fattore, E., & Fanelli, R. (2013). Palm oil and palmitic acid: A review on cardiovascular effects and carcinogenicity. International Journal of Food Sciences and Nutrition, 64, 648–659. https://doi.org/10.3109/09637486.2013.768213
70. Favé, G., Coste, T. C., & Armand, M. (2004). Physicochemical properties of lipids: New strategies to manage fatty acid bioavailability. Molecular and Cellular Biology, 50, 815–831.
71. Fomon, S. J. (1975). What are infants fed in the United States? Pediatrics, 56, 3, 350–354.
72. Forouhi, N. G., Koulman, A., Sharp, S. J., Imamura, F., Kröger, J., Schulze, M. B., Crowe, F. L., Huerta, J. M., Guevara, M., Beulens, J. W. J., Van Woudenbergh, G. J., Wang, L., Summerhill, K., Griffin, J. L., Feskens, E. J. M., Amiano, P., Boeing, H., Clavel-Chapelon, F., Dartois, L., Fagherazzi, G., Franks, P. W., Gonzalez, C., Jakobsen, M. U., Kaaks, R., Key, T. J., Khaw, K. T., Kühn, T., Mattiello, A., Nilsson, P. M., Overvad, K., Pala, V., Palli, D., Quirós, J. R., Rolandsson, O., Roswall, N., Sacerdote, C., Sánchez, M. J., Slimani, N., Spijkerman, A. M. W., Tjonneland, A., Tormo, M. J., Tumino, R., Van der, A D. L., Van der Schouw, Y. T., Langenberg, C., Riboli, E., & Wareham, N. J. (2014). Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: The EPIC-InterAct case-cohort study. Lancet Diabetes & Endocrinology, 2, 810–818.
73. https://doi.org/10.1016/S2213–8587(14)70146–9
74. Franchi, L., Eigenbrod, T., Munoz-Planillo, R., & Nunez, G. (2009). The inflammasome: A caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature Immunology, 10, 241–247.
75. https://doi.org/10.1038/ni.1703
76. Gallagher, E. J., & LeRoith, D. (2015). Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiological Reviews, 95, 727–748.
77. https://doi.org/10.1152/physrev.00030.2014
78. Gee, P. T. (2007). Analytical characteristics of crude and refined palm oil and fractions. European Journal of Lipid Science and Technology, 109, 373–379.
79. https://doi.org/10.1002/ejlt.200600264
80. Ge, G., Wu, J., & Lin, Q. (2001). Effect of membrane fluidity on tyrosine kinase activity of reconstituted epidermal growth factor receptor. Biochemical and Biophysical Research Communications, 282, 511–514.
81. https://doi.org/10.1006/bbrc.2001.4600
82. Ghoshal, S., Witta, J., Zhong, J., De Villiers, W., & Eckhardt, E. (2009). Chylomicrons promote intestinal absorption of lipopolysaccharides. Journal of Lipid Research, 50, 90–97. https://doi.org/10.1194/jlr.M800156-JLR200
83. Gunstone, F. D. (2011). Vegetable oils in food technology: Composition, properties and uses (2nd ed., pp. 25–153). Blackwell Publishing Ltd.
84. Hardy, S., Langelier, Y., & Prentki, M. (2000). Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Research, 60, 6353–6358.
85. Henson, I. E. (2012). A brief history of the palm oil. In Palm oil: Production, processing, characterization and uses. AOCS Press.
86. Hodge, A. M., Williamson, E. J., Bassett, J. K., MacInnis, R. J., Giles, G. G., & English, D. R. (2015). Dietary and biomarker estimates of fatty acids and risk of colorectal cancer. International Journal of Cancer. https://doi.org/10.1002/ijc.29479
87. Holt, E.L.L., Courtney, A.M., & Fales, H.L. (1920). Calcium metabolism of infants and young children and the relation of calcium to fat excretion in the stools. Archives of Pediatrics and Adolescent Medicine, 19(3), 201–222.
88. Holt, E. L. L., Courtney, A. M., & Fales, H. L. (1918). Is the amount of calcium usually given in dilutions of cow’s milk injurious to infants?: A reply to the article on «Calcium in its Relation to the Absorption of Fatty Acids», by Bosworth, Bowditch and Giblin. American Journal of Diseases of Children; Archives of Pediatrics and Adolescent Medicine, 16(1), 52–56.
89. Holt, Jr. M. D. L. E., Tidwell, Ph. D. H. C., Kirk, M. D. C. M., Cross, D. M., & Neale, S. (1935). Studies in fat metabolism: I. Fat absorption in normal infants. Journal of Pediatrics, 6(4), 427–480.
90. https://doi.org/10.1016/S0022–3476(35)80034–6
91. Ishii, M., Maeda, A., Tani, S., & Akagawa, M. (2015). Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules. Archives of Biochemistry and Biophysics, 566, 26–35. https://doi.org/10.1016/j.abb.2014.12.009
92. Jackson, M. D., Walker, S. P., Simpson-Smith, C. M., Lindsay, C. M., Smith, G., McFarlane-Anderson, N., Bennett, F. I., Coard, K. C. M., Aiken, W. D., Tulloch, T., Paul, T. J., & Wan, R. L. (2012). Associations of whole-blood fatty acids and dietary intakes with prostate cancer in Jamaica. Cancer Causes & Control, 23, 23–33. https://doi.org/10.1007/s10552–011-9850–4
93. Jager, J., Gremeaux, T., Cormont, M., Marchand-Brustel, Y. L., & Tanti, J.-F. (2007). Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology, 148, 241–251. https://doi.org/10.1210/en.2006–0692
94. Jensen, R. G. (1996). The lipids in human milk. Progress in Lipid Research, 35, 53–92. https://doi.org/10.1016/0163–7827(95)00010–0
95. Jiao, P., Ma, J., Feng, B., Zhang, H., Diehl, J. A., Chin, Y. E., Yan, W., & Xu, H. (2011). FFA-induced adipocyte inflammation and insulin resistance: Involvement of ER stress and IKKβ pathways. Obesity, 19, 483–491.
96. https://doi.org/10.1038/oby.2010.200
97. Karupaiah, T., & Sundram, K. (2007). Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: A review of their nutritional implications. Nutrition & Metabolism, 4, 16–32.
98. https://doi.org/10.1186/1743–7075-4–16
99. Kennedy, K., Fewtrell, M. S., Morley, R., Abbott, R., Quinlan, P. T., Wells, J. C., Bindels, J. G., & Lucas, A. (1999). Double–blind, randomized trial of a synthetic triacylglycerol in formula–fed term infants: effects on stool biochemistry, stool characteristics, and bone mineralization. American Journal of Clinical Nutrition, 70(5), 920–927. https://doi.org/10.1093/ajcn/70.5.920
100. Keys, A., Menotti, A., Aravanis, C., Blackburn, H., Djordevic, B. S., Buzina, R., Dontas, A. S., Fidanza, F., Karvonen, M. J., & Kimura, N. (1984). The seven countries study: 2289 deaths in 15 years. Preventive Medicine, 13, 141–154. https://doi.org/10.1016/0091–7435(84)90047–1
101. Keys, A., Menotti, A., Karvonen, M. J., Aravanis, C., Blackburn, H., Buzina, R., Djordjevic, B. S., Dontas, A. S., Fidanza, F., & Keys, M. H. (1986). The diet and 15-year death rate in the seven countries study. American Journal of Epidemiology, 124, 903–915. https://doi.org/10.1093/oxfordjournals.aje.a114480
102. Kharroubi, A. T., & Darwish, H. M. (2015). Diabetes mellitus: The epidemic of the century. World Journal of Diabetes, 6, 850–867. https://doi.org/10.4239/wjd.v6.i6.850
103. Kochikuzhyil, B. M., Devi, K., & Fattepur, S. R. (2010). Effect of saturated fatty acid-rich dietary vegetable oils on lipid profile, antioxidant enzymes and glucose tolerance in diabetic rats. Indian Journal of Pharmacology, 42, 142–145. https://doi.org/10.4103/0253–7613.66835
104. Koletzko, B., Baker, S., Cleghorn, G., Neto, U. F., Gopalan, S., Hernell, O., Hock, Q. S., Jirapinyo, P., Lonnerdal, B., Pencharz, P., Pzyrembel, H., Ramirez-Mayans, J., Shamir, R., Turck, D., Yamashiro, Y., & Zong-Yi, D. (2005). Global standard for the composition of infant formula: Recommendations of an ESPGHAN coordinated international expert group. Journal of Pediatric Gastroenterology and Nutrition, 41(5), 584–599. https://doi.org/10.1097/01.mpg.0000187817.38836.42
105. Kolonel, L. N., Nomura, A. M., & Cooney, R. V. (1999). Dietary fat and prostate cancer: Current status. Journal of the National Cancer Institute, 91, 414–428. https://doi.org/10.1093/jnci/91.5.414
106. Koo, W. W., Hammami, M., Margeson, D. P., Nwaesei, C., Montalto, M. B., & Lasekan, J. B. (2003). Reduced bone mineralization in infants fed palm olein–containing formula: A randomized, double–blinded, prospective trial. Pediatrics, 111(5), 1017–1023. https://doi.org/10.1542/peds.111.5.1017
107. Koo, W. W. K., Hockman, E. M., & Dow, M. (2006). Palm olein in the fat blend of infant formulas: Effect on the intestinal absorption of calcium and fat, and bone mineralization. Journal of the American College of Nutrition, 2, 117–122.
108. https://doi.org/10.1080/07315724.2006.10719521
109. Kopelman, P. G. (2000). Obesity as a medical problem. Nature, 404, 635–643. https://doi.org/10.1038/35007508
110. Kritchevsky, D., & Sundram K. (2002). Palm oil in human nutrition: Recent advances. Asia Pacific Journal of Clinical Nutrition, 11(7), 393. https://doi.org/10.1046/j.1440–6047.2001.00401.x
111. Kritchevsky, D., Tepper, S. A., Chen, S. C., Meijer, G. W., & Krauss, R. M. (2000). Cholesterol vehicle in experimental atherosclerosis. Effects of specific synthetic triglycerides. Lipids, 35, 621–625. https://doi.org/10.1007/s11745–000-0565–3
112. Kritchevsky, D., Tepper, S. A., Czarnecki, S. K., & Sundram, K. (2002). Red palm oil in experimental atherosclerosis. Asia Pacific Journal of Clinical Nutrition, 11, 433–437. https://doi.org/10.1046/j.1440–6047.11.s.7.5.x
113. Kritchevsky, D., Tepper, S. A., & Kuksis, A. (1998). Cholesterol vehicle in experimental atherosclerosis. Native and randomized lard and tallow. Journal of Nutritional Biochemistry, 9, 582–585.
114. Kritchevsky, D., Tepper, S. A., & Wright, S. (1998). Cholesterol vehicle in experimental atherosclerosis. Cottonseed oil and randomized cottonseed oil. Nutrition Reviews, 18, 259–264.
115. Kromhout, D., Keys, A., Aravanis, C., Buzina, R., Fidanza, F., Giampaoli, S., Jansen, A., Menotti, A., Nedeljkovic, S., & Pekkarinen M. (1989). Food consumption patterns in the 1960s in seven countries. American Journal of Clinical Nutrition, 49, 889–894. https://doi.org/10.1093/ajcn/49.5.889
116. Kromhout, D., Menotti, A., Bloemberg, B., Aravanis, C., Blackburn, H., Buzina, R., Dontas, A. S., Fidanza, F., Giampaoli, S., & Jansen, A. (1995). Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: The seven countries study. Preventive Medicine, 24, 308–315. https://doi.org/10.1006/pmed.1995.1049
117. Kronenberg, F., Kronenberg, M. F., Kiechl, S., Trenkwalder, E., Santer, P., Oberhollenzer, F., Egger, G., Utermann, G., & Willeit, J. (1999). Role of lipoprotein(a) and apolipoprotein(a) phenotype in atherogenesis: Prospective results from the Bruneck study. Circulation, 100, 1154–1160.
118. https://doi.org/10.1161/01.cir.100.11.1154
119. Kurahashi, N., Inoue, M., Iwasaki, M., Sasazuki, S., & Tsugane, A.S. (2008). Dairy product, saturated fatty acid, and calcium intake and prostate cancer in a prospective cohort of Japanese men. Cancer Epidemiology, Biomarkers & Prevention, 17, 930–937. https://doi.org/10.1158/1055–9965.EPI-07–2681
120. Kuriki, K., Wakai, K., Hirose, K., Matsuo, K., Ito, H., Suzuki, T., Saito, T., Kanemitsu, Y., Hirai, T., Kato, T., Tatematsu, M., & Tajima, K. (2006). Risk of colorectal cancer is linked to erythrocyte compositions of fatty acids as biomarkers for dietary intakes of fish, fat, and fatty acids. Cancer Epidemiology, Biomarkers & Prevention, 15, 1791–1798.
121. https://doi.org/10.1158/1055–9965.EPI-06–0180
122. Laugerette, F., Furet, J. P., Debard, C., Daira, P., Loizon, E., Géloën, A., Soulage, C. O., Simonet, C., Lefils-Lacourtablaise, J., Bernoud-Hubac, N., Bodennec, J., Peretti, N., Vidal, H., & Michalski, M.-C. (2012). Oil composition of high-fat diet affects metabolic inflammation differently in connection with endotoxin receptors in mice. American Journal of Physiology — Endocrinology and Metabolism, 302, 374–386.
123. https://doi.org/10.1152/ajpendo.00314.2011
124. Laugerette, F., Vors, C., Geloen, A., Chauvin, M.-A., Soulage, C., Lambert-Porcheron, S., Peretti, N., Alligier, M., Burcelin, R., Laville, M., Vidal, H., & Michalsk, M.-C. (2011). Emulsified lipids increase endotoxemia: Possible role in early postprandial low-grade inflammation. Journal of Nutritional Biochemistry, 22, 53–59. https://doi.org/10.1016/j.jnutbio.2009.11.011
125. Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102, 11070–11075. https://doi.org/10.1073/pnas.0504978102
126. Litmanovitz, I., Davidson, K., & Eliakim, A. (2011). The effects of infant formula beta–palmitate structural position on bone speed of sound, anthropometrics and infantile colic: A double–blind, randomized control trial. ESPGHAN Annual Meeting, May 25–28, 2011, Sorrento, Italy. Journal of Pediatric Gastroenterology and Nutrition, 52(1), 215.
127. Lof, M., Sandin, S., Lagiou, P., Hilakivi-Clarke, L., Trichopoulos, D., Adami, H.-O., & Weiderpass, E. (2007). Dietary fat and breast cancer risk in the Swedish women’s lifestyle and health cohort. British Journal of Cancer, 97, 1570–1576.
128. https://doi.org/10.1038/sj.bjc.6604033
129. López-López, A., Castellote-Bargalló, A. I., Campoy-Folgoso, C., Rivero-Urgël, M., Tormo-Carnicé, R., Infante-Pina, D., & López-Sabater, M. C. (2001). The influence of dietary palmitic acid triacylglyceride position on the fatty acid, calcium and magnesium contents of at term newborn faeces. Early Human Development, 65, 83–94. https://doi.org/10.1016/s0378–3782(01)00210–9
130. Lucas, A., Quinlan, P., Abrams, S., Ryan, S., Meah, S., & Lucas, P. J. (1997). Randomised controlled trial of a synthetic triglyceride milk formula for preterm infants. Archives of Disease in Childhood — Fetal and Neonatal Edition, 77(3), 178–84. https://doi.org/10.1136/fn.77.3.f178
131. Magri, T.P., Fernandes, F.S., Souza, A.S., Langhi, L.G.P., Barboza, T., Misan, V., Mucci, D.B., Santos, R.M., Nunes, T.F., Souza, S.A.L., Coelho, V.M., & Do Carmo, M.G.T. (2015). Interesterified fat or palmoil as substitutes for partially hydrogenated fat in maternal diet can predispose obesity in adult male offspring. Clinical Nutrition, 24, 904–910.
132. https://doi.org/10.1016/j.clnu.2014.09.014
133. Marzuki, A., Arshad, F., Razak, T. A., & Jaarin, K. (1991). Influence of dietary fat on plasma lipid profiles of Malaysian adolescents. American Journal of Clinical Nutrition, 53(4), 1010–1014. https://doi.org/10.1093/ajcn/53.4.1010S
134. Matsuoka, T., Adair, J. E., Lih, F. B., His, L. C., Rubino, M., Eling, T. E., Tomer, K. B., Yashiro, M., Hirakawa, K., Olden, K., & Roberts, J. D. (2010). Elevated dietary linoleic acid increases gastric carcinoma cell invasion and metastasis in mice. British Journal of Cancer, 103, 1182–1191.
135. https://doi.org/10.1038/sj.bjc.6605881
136. May, C. Y., & Nesaretnam, K. (2014). Research advancements in palm oil nutrition. European Journal of Lipid Science and Technology, 116, 1301–1315.
137. https://doi.org/10.1002/ejlt.201400076
138. Mazzocchi, А., De Cosmi, V., & Milani, G. P. (2022). Agostoni health and sustainable nutritional choices from childhood: Dietary pattern and social models. Annals of Nutrition and Metabolism, 78(2), 21–27. https://doi.org/10.1159/000524860
139. Mba, O. I., Dumont, M. J., & Ngadi, M. (2015). Palm Oil: Processing, characterization and utilization in the food industry — A review. Food Bioscience, 10, 26–41. https://doi.org/10.1016/j.fbio.2015.01.003
140. Mehrotra, V., Sehgal, S. K., & Bangale, N. R. (2019). Fat structure and composition in human milk and infant formulas: Implications in infant health. Clinical Epidemiology and Global Health, 7(2), 153–159 https://doi.org/10.1016/j.cegh.2018.03.005
141. Menotti, A., Keys, A., Aravanis, C., Blackburn, H., Dontas, A., Fidanza, F., Karvonen, M. J., Kromhout, D., Nedeljkovic, S., & Nissinen, A. (1989). Seven countries study. First 20-year mortality data in 12 cohorts of six countries. Annals of Medicine, 21, 175–179. https://doi.org/10.3109/07853898909149929
142. Mensink, R. P., & Katan, M. B. (1992). Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arteriosclerosis, Thrombosis, and Vascular Biology, 12, 911–919. https://doi.org/10.1161/01.atv.12.8.911
143. Mensink, R. P., Zock, P. L., Kester, A. D., & Katan, M. B. (2003). Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. American Journal of Clinical Nutrition, 77, 1146–1155.
144. https://doi.org/10.1093/ajcn/77.5.1146
145. Mordier, S., & Iynedjian, P. B. (2007). Activation of mammalian target of rapamycin complex 1 and insulin resistance induced by palmitate in hepatocytes. Biochemical and Biophysical Research Communications, 362, 206–211. https://doi.org/10.1016/j.bbrc.2007.08.004
146. Musa, C. V., Mancini, A., Alfieri, A., Labruna, G., Valerio, G., Franzese, A., Pasanisi, F., Licenziati, M. R., Sacchetti, L., & Buono, P. (2012). Four novel UCP3 gene variants associated with childhood obesity: Effect on fatty acid oxidation and on prevention of triglyceride storage. International Journal of Obesity, 36, 207–217. https://doi.org/10.1038/ijo.2011.81
147. Musso, G., Gambino, R., & Cassader, M. (2011). Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annual Review of Medicine, 62, 361–380. https://doi.org/10.1146/annurev-med-012510–175505
148. Nelson, S. E., Frantz, J. A., & Ziegler, E. E. (1998). Absorption of fat and calcium by infants fed a milk–based formula containing palm olein. Journal of the American College of Nutrition, 17(4), 327–332. https://doi.org/10.1080/07315724.1998.10718770
149. Nelson, S. E., Rogers, R. R., Frantz, J. A., & Ziegler, E. E. (1996). Palm olein in infant formula: absorption of fat and minerals by normal infants. American Journal of Clinical Nutrition, 64(3), 291–296. https://doi.org/10.1093/ajcn/64.3.291
150. Obibuzor, J. U., Okogbenin, E. A., & Abigor, R. D. (2012). Oil recovery from palm fruits and palm kernel. In Palm oil: Production, processing, characterization and uses (pp. 299–328). AOCS Press. https://doi.org/10.1016/B978–0-9818936–9-3.50014–9
151. Ong, A. S., & Goh, S. H. (2002). Palm oil: A healthful and cost-effective dietary component. Food and Nutrition Bulletin, 23, 11–22. https://doi.org/10.1177/156482650202300102
152. Odia, O. J., Ofori, S., & Maduka, O. (2015). Palm oil and the heart: A review. World Journal of Cardiology, 26, 144–149.
153. https://doi.org/10.4330/wjc.v7.i3.144
154. Padial-Jaudenes, M., Castanys-Munoz, E., Ramirez, M., & Lasekan, J. (2020). Physiological impact of palm olein or palm oil in infant formulas: A review of clinical evidence. Nutrients, 12(12), 3676. https://doi.org/10.3390/nu12123676
155. Raven, A. M., & Robinson, K. L. (1960). Studies of the nutrition of the young calf. British Journal of Nutrition, 14(2), 135–146.
156. Renaud, S. C., Ruf, J. C., & Petithory, D. (1995). The positional distribution of fatty acids in palm oil and lard influences their biologic effects in rats. Journal of Nutrition, 125, 229–237. https://doi.org/10.1093/jn/125.2.229
157. Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA Panel on Contaminants in the Food Chain (CONTAM). https://doi.org/10.2903/j.efsa.2016.4426
158. Rosqvist, F., Iggman, D., Kullberg, J., Cedernaes, J., Johansson, H.-E., Larsson, A., Johansson, L., Ahlström, H., Arner, P., Dahlman, I., & Risérus, U. (2014). Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes, 63, 2356–2368.
159. https://doi.org/10.2337/db13–1622
160. Rossini, A., Zanobbio, L., Sfondrini, L., Cavalleri, A., Secreto, G., Morelli, D., Palazzo, M., Sommariva, M., Tagliabue, E., Rumio, C., & Balsari, A. (2013). Influence of fatty acid-free diet on mammary tumor development and growth rate in HER-2/Neu transgenic mice. Journal of Cellular Physiology, 228, 242–249. https://doi.org/10.1002/jcp.24130
161. Saadatian-Elahi, M., Norat, T., Goudable, J., & Riboli, E. (2004). Biomarkers of dietary fatty acid intake and the risk of breast cancer: A meta-analysis. International Journal of Cancer, 111, 584–591. https://doi.org/10.1002/ijc.20284
162. Sambanthamurthi, R., Sundram, K., & Tan, Y. A. (2000). Chemistry and biochemistry of palm oil. Progress in Lipid Research, 39, 507–558. https://doi.org/10.1016/s0163–7827(00)00015–1
163. Savarese, M., Castellini, G., Paleologo, M., & Graffigna, G. (2022). Determinants of palm oil consumption in food products: A systematic review. Journal of Functional Foods, 96, 105207. https://doi.org/10.1016/j.jff.2022.105207
164. Sczaniecka, A. K., Brasky, T. M., Lampe, J. W., Patterson, R. E., & White, E. (2012). Dietary intake of specific fatty acids and breast cancer risk among postmenopausal women in the VITAL cohort. Nutrition and Cancer, 64, 1131–1142. https://doi.org/10.1080/01635581.2012.718033
165. Sen, C. K., Khanna, S., & Roy, S. (2007). Tocotrienols in health and disease: The other half of the natural vitamin E family. Molecular Aspects of Medicine, 28, 692–728. https://doi.org/10.1016/j.mam.2007.03.001
166. Shannon, J., King, I. B., Moshofsky, R., Lampe, J. W., Gao, D. L., Ray, R. M., & Thomas, D. B. (2007). Erythrocyte fatty acids and breast cancer risk: A case-control study in Shanghai, China. American Journal of Clinical Nutrition, 85, 1090–1097. https://doi.org/10.1093/ajcn/85.4.1090
167. Shen, X. J., Zhou, J. D., Dong, J. Y., Ding, W. Q., & Wu, J. C. (2012). Dietary intake of n-3 fatty acids and colorectal cancer risk: A meta-analysis of data from 489,000 individuals. British Journal of Nutrition, 108, 1550–1556.
168. https://doi.org/10.1017/S0007114512003546
169. Sieri, S., Krogh, V., Ferrari, P., Berrino, F., Pala, V., Thiébaut, A. C. M., Tjønneland, A., Olsen, A., Overvad, K., Jakobsen, M. U., Clavel-Chapelon, F., Chajes, V., Boutron-Ruault, Marie-Christine, Kaaks, R., Linseisen, J., Boeing, H., Nöthlings, U., Trichopoulou, A., Naska, A., Lagiou, P., Panico, S., Palli, D., Vineis, P., Tumino, R., Lund, E., Kumle, M., Skeie, G., González, C. A., Ardanaz, E., Amiano, P., Tormo, M.J., Martínez-García, C., Quirós, J. R., Berglund, G., Gullberg, B., Hallmans, G., Lenner, P., Bueno-de-Mesquita, H.B., Van Duijnhoven, F. J. B., Peeters, P. H. M., Van Gils, C. H., Key, T. J., Crowe, F. L., Bingham, S., Khaw, K. T., Rinaldi, S., Slimani, N., Jenab, M., Norat, T., & Riboli, E. (2008). Dietary fat and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition. American Journal of Clinical Nutrition, 88, 1304–1312. https://doi.org/10.3945/ajcn.2008.26090
170. Silva, A. P., Guimaraes, D. E., Mizurini, D. M., Maia, I. C., Ortiz-Costa, S., Sardinha, F. L., & Do Carmo, M. G. T. (2006). Dietary fatty acids early in life affect lipid metabolism and adiposity in young rats. Lipids, 41, 535–541.
171. https://doi.org/10.1007/s11745–006-5002–0
172. Simon-Szabó, L., Kokas, M., Mandl, J., Kéri, G., & Csala, M. (2014). Metformin attenuates palmitate-induced endoplasmic reticulum stress, Serine Phosphorylation of IRS-1 and apoptosis in rat insulinoma cells. PLoS ONE, 9, 97868–97875. https://doi.org/10.1371/journal.pone.0097868
173. Soto-Guzman, A., Navarro-Tito, N., Castro-Sanchez, L., Martinez-Orozco, R., & Salazar, E. P. (2010). Oleic acid promotes MMP-9 secretion and invasion in breast cancer cells. Clinical & Experimental Metastasis, 27, 505–515.
174. https://doi.org/10.1007/s10585–010-9340–1
175. Souganidis, E., Laillou, A., Leyvraz, M., & Moench-Pfanner, R. (2013). A comparison of retinyl palmitate and red Palm Oil β-carotene as strategies to address Vitamin A deficiency. Nutrients, 15, 3257–3271. https://doi.org/10.3390/nu5083257
176. Specker, B. L., Beck, A., Kalkwarf, H., & Ho, M. (1997). Randomized trial of varying mineral intake on total body bone mineral accretion during the first year of life. Pediatrics, 99(6), 12. https://doi.org/10.1542/peds.99.6.e12
177. Stoll, L.L., Denning, G. M., Li, W. G., Rice, J. B., Harrelson, A. L., Romig, S. A., Gunnlaugsson, S. T., Miller, Jr. F. J., & Weintraub, N. L. (2004). Regulation of endotoxin-induced proinflammatory activation in human coronary artery cells: Expression of functional membrane-bound CD14 by human coronary artery smooth muscle cells. Journal of Immunology, 173, 1336–1343.
178. https://doi.org/10.4049/jimmunol.173.2.1336
179. Storlien, L. H., Higgins, J. A., Thomas, T. C., Brown, M. A., Wang, H. Q., Huang, X. F., & Else, P. L. (2000). Diet composition and insulin action in animal models. British Journal of Nutrition, 83, 85–90. https://doi.org/10.1017/s0007114500001008
180. Sundram, K., Hayes, K. C., & Siru, O. H. (1994). Dietary palmitic acid results in lower serum cholesterol than does a lauric-myristic acid combination in normolipemic humans. American Journal of Clinical Nutrition, 59, 841–846.
181. https://doi.org/10.1093/ajcn/59.4.841
182. Sundram, K., Ismail, A., Hayes, K. C., Jeyamalar, R., & Pathmanathan, R. (1997). Trans (elaidic) fatty acids adversely affect the lipoprotein profile relative to specific saturated fatty acids in humans. Journal of Nutrition, 127, 514–520.
183. https://doi.org/10.1093/jn/127.3.514S
184. Sundram, K., Sambanthamurthi, R., & Tan, Y. A. (2003). Palm fruit chemistry and nutrition. Asia Pacific Journal of Clinical Nutrition, 12, 355–362.
185. Theodoratou, E., McNeill, G., Cetnarskyj, R., Farrington, S. M., Tenesa, A., Barnetson, R., Porteous, M., Dunlop, M., & Campbell, H. (2007). Dietary fatty acids and colorectal cancer: A case-control study. American Journal of Epidemiology, 166, 181–195. https://doi.org/10.1093/aje/kwm063
186. Thiebaut, A. C., Kipnis, V., Chang, S. C., Subar, A. F., Thompson, F. E., Rosenberg, P. S., Hollenbeck, A. R., Leitzmann, M., & Schatzkin, A. (2007). Dietary fat and postmenopausal invasive breast cancer in the national institutes of health-AARP diet and health study cohort. Journal of the National Cancer Institute, 99, 451–462. https://doi.org/10.1093/jnci/djk094
187. Thompson, N. M., Norman, A. M., Donkin, S. S., Shankar, R. R., Vickers, M. H., Miles, J. L., & Breier, B. H. (2007). Prenatal and postnatal pathways to obesity: Different underlying mechanisms, different metabolic outcomes. Endocrinology, 148, 2345–2354. https://doi.org/10.1210/en.2006–1641
188. Ting, J. P., Willingham, S. B., & Bergstralh, D. T. (2008). NLRs at the intersection of cell death and immunity. Nature Reviews Immunology, 8, 372–379. https://doi.org/10.1038/nri2296
189. Truswell, A. S. (2000). Comparing palmolein with different predominantly monounsaturated oils: Effect on plasma lipids. International Journal of Food Sciences and Nutrition, 51, 73–77.
190. Urugo, M. M., Teka, T. A., Teshome, P. G., & Tringo, T. T. (2021). Palm oil processing and controversies over its health effect: Overview of positive and negative consequences. Journal of Oleo Science, 70(12), 1693–1706.
191. https://doi.org/10.5650/jos.ess21160
192. Utarwuthipong, T., Komindr, S., Pakpeankitvatana, V., Songchitsomboon, S., & Thongmuang, N. (2009). Small dense low-density lipoprotein concentration and oxidative susceptibility changes after consumption of soybean oil, rice bran oil, palm oil and mixed rice bran/palm oil in hypercholesterolaemic women. Journal of International Medical Research, 37, 96–104.
193. https://doi.org/10.1177/147323000903700111
194. Van Amelsvoort, J. M., Van der Beek, A., & Stam, J. J. (1986). Effects of the type of dietary fatty acid on the insulin receptor function in rat epididymal fat cells. Annals of Nutrition and Metabolism, 30, 273–280. https://doi.org/10.1159/000177204
195. Vega-López, S., Ausman, L. M., Jalbert, S. M., Erkkilä, A. T., & Lichtenstein, A. H. (2006). Palm and partially hydrogenated soybean oils adversely alter lipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects. American Journal of Clinical Nutrition, 84, 54–62. https://doi.org/10.1093/ajcn/84.1.54
196. Verschuren, W. M., Jacobs, D. R., Bloemberg, B. P., Kromhout, D., Menotti, A., Aravanis, C., Blackburn, H., Buzina, R., Dontas, A. S., & Fidanza, F. (1995). Serum total cholesterol and long-term coronary heart disease mortality in different cultures. Twenty-five-year follow-up of the seven countries study. Journal of the American Medical Association, 274, 131–136.
197. Walldius, G., & Jungner, I. (2004). Apolipoprotein B and apolipoprotein A-I: Risk indicators of coronary heart disease and targets for lipid-modifying therapy. Journal of Internal Medicine, 255, 188–205.
198. https://doi.org/10.1046/j.1365–2796.2003.01276.x
199. Walldius, G., Jungner, I., Holme, I., Aastveit, A. H., Kolar, W., & Steiner, E. (2001). High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): A prospective study. Lancet, 358, 2026–2033. https://doi.org/10.1016/S0140–6736(01)07098–2
200. Wang, X., Cheng, M., Zhao, M., Ge, A., Guo, F., Zhang, M., Yang, Y., Liu, L., & Yang, N. (2013). Differential effects of high-fat-diet rich in lard oil or soybean oil on osteopontin expression and inflammation of adipose tissue in diet-induced obese rats. European Journal of Clinical Nutrition, 52, 1181–1189.
201. https://doi.org/10.1007/s00394–012-0428-z
202. Wei, Y., Wang, D., Topczewski, F., & Passagliotti, M.J. (2006). Saturated fatty acids induce endoplasmic reticulum stress and apoptosis indepently of ceramide in liver cells. American Journal of Physiology — Endocrinology and Metabolism, 291, 275–281. https://doi.org/10.1152/ajpendo.00644.2005
203. Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M. T.-H., Brickey, W. J., & Ting, J. P.-Y. (2011). Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature Immunology, 12, 408–415.
204. https://doi.org/10.1038/ni.2022
205. Widdowson, E. M. (1965). Absorption and excretion of fat, nitrogen, and minerals from «filled» milks by babies one week old. Lancet, 2(7422), 1099–1105. https://doi.org/10.1016/s0140–6736(65)90065–6
206. Wolk, A., Bergstrom, R., Hunter, D., Willett, W., Ljung, H., Holmberg, L., Bergkvist, L., Bruce, A., & Adami, H. O. (1998). A prospective study of association of monounsaturated fat and other types of fat with risk of breast cancer. Archives of Internal Medicine, 158, 41–45. https://doi.org/10.1001/archinte.158.1.41
207. Yang, M., Wei, D., Mo, C., Zhang, J., Wang, X., Han, X., Wang, Z., & Xiao, H. (2013). Saturated fatty acid palmitate-induced insulin resistance is accompanied with myotube loss and the impaired expression of health benefit myokine genes in C2C12 myotubes. Lipids in Health and Disease, 12, 104–113. https://doi.org/10.1186/1476–511X-12–104.
208. Zhang, K. (2010). Integration of ER stress, oxidative stress and the inflammatory response in health and disease. International Journal of Clinical and Experimental Medicine, 3(1), 33–40.
Дополнительные файлы
![]() |
1. Неозаглавлен | |
Тема | ||
Тип | Исследовательские инструменты | |
Скачать
(94KB)
|
Метаданные ▾ |
Рецензия
Для цитирования:
Шилов В.В., Литвяк В.В., Росляков Ю.Ф. Влияние компонентов пальмового масла на характер обмена веществ в организме человека. FOOD METAENGINEERING. 2023;1(4). https://doi.org/10.37442/fme.2023.4.13
For citation:
Shilov V.V., Litvyak V.V., Roslyakov Yu.F. Influence of Components of Palm Oil on the Character of Metabolism in the Human Body. FOOD METAENGINEERING. 2023;1(4). (In Russ.) https://doi.org/10.37442/fme.2023.4.13