https://doi.org/10.37442/fme.2025.3.91

Сравнение методов ИК- и Раман-спектроскопии для оценки структурных изменений в молоке при тепловой обработке

И.А. Барковская, С.Н. Туровская, Е.Е. Илларионова, В.Ю. Ярышев, В.Г. Блиадзе, В.В. Кондратенко

Всероссийский научно-исследовательский институт молочной промышленности, г. Москва, Российская Федерация

Корреспонденция: Ирина Александровна Барковская

E-mail: i_barkovskaya@vnimi.org

Конфликт интересов:

авторы сообщают об отсутствии конфликта интересов.

Поступила: 20.04.2025 Принята: 15.09.2025 Опубликована: 30.09.2025

Финансирование:

Исследование выполнено при финансовой поддержке ФГАНУ «ВНИМИ» в рамках выполнения государственного задания FNSS-2025-0001

Copyright: © 2025 Авторы

АННОТАЦИЯ

Введение: Контроль качества молочной продукции требует быстрых, точных и несложных методов анализа. Широкое распространение имеет инфракрасная спектроскопия с использованием в большинстве случаев импортных приборов, что актуализирует задачу разработки российских аналогов и поиск альтернативных методов контроля. Одним их таких методов выступает рамановская спектроскопия, обладающая преимуществами: меньшей чувствительностью к водному фону образцов, высокой информативностью, возможностью перевода спектральных метрик в количественные. В России данный метод практически не применяется для анализа качества молока, что делает актуальным исследования по его адаптации и сравнительной оценке с традиционными подходами.

Цель: Сопоставление инфракрасной и рамановской спектроскопии в аспекте анализа обезжиренного пастеризованного молока, полученного при разных температурных нагрузках, и определение спектральных диапазонов, наиболее чувствительных к температуре для совершенствования методик контроля качества молочной продукции в российской практике.

Материалы и методы: Проводили снятие спектров образцов обезжиренного пастеризованного молока, полученных при нагреве до 70, 80 и 90°C и выдержке 30 секунд. Контроль – молоко, нагретое до 45°C. Использовали российское оборудование: инфракрасный спектрометр Инфраспек-1201 и рамановский спектрометр РС-ИК785. Спектры анализировали методом главных компонент.

Результаты: Для инфракрасных спектров образцов зафиксировали изменения в областях амидов I–III (1640–1660 см⁻¹, 1530–1550 см⁻¹ и 1230–1300 см⁻¹ соответственно), лактозы (1040-1150 см⁻¹), липидо-белковых комплексов (2850-2950 см⁻¹) и воды (3200-3400 см⁻¹). Визуальные различия спектральных показателей были минимальны визуально и по показателю поглощения (отн.ед.). Метод главных компонент позволил выявить вклад перечисленных диапазонов волновых чисел в различия образцов. Рамановская спектроскопия зафиксировала ярко выраженные различия в зонах 280-520 см⁻¹, 800-850 см⁻¹, 1450 см⁻¹, 1660 см⁻¹ и 2850–2950 см-1, характеризующих основные компоненты молочной системы. Выявлена четкая тенденция снижения интенсивности характерных полос с повышением температуры обработки. Анализ главных компонент отразил вклад составных частей молока (белки, углеводы и липиды) в различия образцов.

Выводы: Полученные данные свидетельствуют о более высокой чувствительности рамановской спектроскопии к выявлению трансформаций составных частей молока при температурном воздействии, в сравнении с инфракрасной спектроскопией. Результаты подтверждают перспективность использования российского рамановского спектрометра для оценки качества молочных продуктов.

Ключевые слова: рамановская спектроскопия; ИК-спектроскопия; термическая обработка молока; спектры молока

Для цитирования: Барковская, И.А., Туровская, С.Н., Илларионова, Е.Е., Ярышев, В.Ю., Блиадзе, В.Г., & Кондратенко, В.В. (2025). Сравнение методов ИК- и Раман-спектроскопии для оценки структурных изменений в молоке при тепловой обработке. FOOD METAENGINEERING, 3(3), 21–38. https://doi.org/10.37442/fme.2025.3.91

https://doi.org/10.37442/fme.2025.3.91

Comparison of IR and Raman Spectroscopy Methods for Assessing Structural Changes in Milk during Heat Treatmen

Irina A. Barkovskaya, Svetlana N. Turovskaya, Elena E. Illarionova, Vladislav Yu. Yaryshev, Vladimir G. Bliadze, Vladimir V. Kondratenko

All-Russian Dairy Research Institute, Moscow, Russian Federation

ABSTRACT

Introduction: Quality control of dairy products requires fast, accurate, and simple analytical methods. Infrared spectroscopy, often using imported instruments, is widely used, necessitating the development of Russian equivalents and the search for alternative control methods. One such method is Raman spectroscopy, which offers advantages such as lower sensitivity to water contamination in samples, high information yield, and the ability to convert spectral metrics into quantitative data. In Russia, this method is rarely used for milk quality analysis, making research into its adaptation and comparative evaluation with traditional approaches crucial.

Purpose: A comparison of infrared and Raman spectroscopy in the analysis of skim pasteurized milk obtained under different temperature loads, and the determination of spectral ranges most sensitive to temperature for improving quality control methods for dairy products in Russian practice.

Materials and Methods: Spectra were recorded on samples of skim pasteurized milk heated to 70, 80, and 90°C and held for 30 seconds. Milk heated to 45°C served as a control. Russian equipment was used: an Infraspek-1201 infrared spectrometer and an RS-IK785 Raman spectrometer. The spectra were analyzed using principal component analysis.

Results: For the infrared spectra of the samples, changes were recorded in the regions of amides I-III (1640–1660 cm⁻¹, 1530–1550 cm⁻¹ and 1230–1300 cm⁻¹, respectively), lactose (1040–1150 cm⁻¹), lipid-protein complexes (2850–2950 cm⁻¹) and water (3200–3400 cm⁻¹). Visual differences in the spectral parameters were minimal visually and in terms of absorption (relative units). The principal component analysis allowed us to identify the contribution of the listed wavenumber ranges to the differences between the samples. Raman spectroscopy recorded pronounced differences in the zones of 280–520 cm⁻¹, 800–850 cm⁻¹, 1450 cm⁻¹, 1660 cm⁻¹ and 2850–2950 cm⁻¹, characterizing the main components of the dairy system. A clear trend of decreasing intensity of the characteristic bands with increasing processing temperature was revealed. Principal component analysis revealed the contribution of milk components (proteins, carbohydrates, and lipids) to the differences between the samples.

Conclusion: The obtained data demonstrate the higher sensitivity of Raman spectroscopy in detecting thermally induced transformations of milk components compared to infrared spectroscopy. The results confirm the potential of using the Russian Raman spectrometer for assessing the quality of dairy products.

Keywords: Raman spectroscopy; IR spectroscopy; heat treatment of milk; milk spectra

Correspondence:

Irina A. Barkovskaya

E-mail: esaulko70@mail.ru

Conflict of interest:

The authors report the absence of a conflict of interest.

Received: 20.04.2025 **Accepted:** 15.09.2025 **Published:** 30.09.2025

Funding:

The study was carried out with the financial support of the All-Russian Dairy Research Institute as part of the state assignment FNSS-2025-0001

Copyright: © 2025 The Authors

To cite: Barkovskaya, I.A., Turovskaya, S.N., Illarionova, E.E., Yaryshev, V.Yu., Bliadze, V.G., & Kondratenko, V.V. (2025). Comparison of IR and Raman spectroscopy methods for assessing structural changes in milk during heat treatment. FOOD METAENGINEERING, 3(3), 21–38. https://doi.org/10.37442/fme.2025.3.91

ВВЕДЕНИЕ

Согласно опубликованным рядом авторов данным и заключению Продовольственной и сельскохозяйственной организации Объединенных Наций1, молоко, имеющее в своем составе высококачественные белки, занимает третье место среди источников животного белка и пятое — среди источников энергии, внося тем самым неоценимый вклад в укрепление здоровья на протяжении всей жизни за счет улучшения рациона питания людей во всем мире (Antunes, 2023; Beckett, 2024). В то же время молоко является одной из ключевых товарных позиций мирового агропромышленного комплекса, обеспечивая доходы существенной части населения (около 10%), напрямую зависящей от производства продуктов переработки молока (Silva, 2021). В этой связи строгий контроль качества и состава молочной продукции на соответствие законодательным актам и стандартам, действующим на территории страны-производителя, является важной задачей для отрасли (Абдуллаева, 2023; Хуршудян, 2018; Галстян, 2025). Классические методы анализа молока и продуктов его переработки (хроматографические, масс-спектрометрические и пр.), несмотря на их относительно высокую точность, в основном трудоемки, основаны на разрушительном воздействии на продукт, требуют длительной и сложной процедуры пробоподготовки (Юрова, 2021). При этом последующее детектирование результатов также может длиться в течение нескольких или даже десятков минут (Zhang, 2025). Это стимулирует поиск альтернативных, экспрессных и желательно неразрушающих образцы подходов.

Одним из перспективных направлений не только для усовершенствования аналитических подходов в оценке качества молока и молочной продукции, но и для исследовательских целей, представляется применение спектроскопических методов, среди которых следует выделить рамановскую спектроскопию (РС). Метод основан на комбинационном рассеянии, т.е. неупругом рассеянии фотонов пучка света и их взаимодействии с молекулами образца. Анализ образцов с использованием рамановских спектрометров не требует специальной химической или физической подготовки перед проведением исследований, быстро предоставляя релевантные результаты измерений, что особенно эффективно может быть использовано в процессе контроля качества продукции на всех технологических этапах ее производства. Также РС позволяет обнаруживать следовые количества примесей в водной части продукта за счет низкой интерференции сигнала воды, что повышает чувствительность анализа (Silva, 2021; He, 2019; Li, 2015; Zhang, 2025).

Характеристики метода РС позволяют идентифицировать сложные макроскопические составные части пищевых продуктов (липиды, протеины, углеводы), что открывает возможности для использования РС для контроля качества различной молочной продукции, например, сухого молока или сливочного масла, наиболее часто подверженных фальсификации (Silva, 2021; Не, 2019; Li, 2015). При этом по сравнению с более распространенной для контроля качества пищевой продукции инфракрасной спектроскопией (Харитонов, 2012) преимущество рамановской заключается в экономии времени и реактивов (промывочных растворов), поскольку продукты можно тестировать сразу, без использования предварительной подготовки, а также на ее результаты не влияет наличие влаги в образцах (Silva, 2021; McGoverin, 2010; Smith, 2013). Также РС дает возможность проводить анализы путем неинвазивного тестирования через неабсорбирующую упаковку (Mohammadi, 2024).

Ряд исследований (Reiner, 2020; Юрова, 2021; Калугина, 2022; Кобзева, 2016; McGoverinc, 2010; Smith, 2013 и др.) демонстрирует широкие возможности РС для дифференциации и количественной оценки молочных продуктов, включая контроль термической обработки и состава основных компонентов. В исследовании Reiner et al. (2020) с использованием РС показана возможность различать жиро- и лактозосодержащие молочные продукты, а также дифференцировать образцы молока, подвергнутые различным температурным и временным воздействиям. Последнее можно определить и используя ВЭЖХ (высокоэффективную жидкостную хроматографию) (Юрова, 2021), установив степень денатурации сывороточных белков (Калугина, 2022; Кобзева, 2016), но при этом затрачивается большое количество материалов и времени. Однако Reiner et al. (2020), применяя PC, однозначно выявили различие между образцами, объясняя это реакциями, проис-

ФАО. (2022, 31 мая). Какую пользу нам приносит молочный сектор [Pour on the benefits!]. Продовольственная и сельскохозяйственная организация Объединенных Haций. https://www.fao.org/newsroom/story/Pour-on-the-benefits%21/ru

ходящими в процессе термообработки: образованием новых химических связей, возникающих в процессе меланоидинообразования и денатурации сывороточных белков, что приводит к спектральным различиям между образцами. На практике это может быть, например, использовано для оценки достаточности температурного воздействия непосредственно перед упаковыванием молока. McGoverin et al. (2010) продемонстрировали возможность использования РС для оценки качества и количественного состава (жира и белка) сухого молока без необходимости ранжирования сухих частиц по размеру и контроля состояния их поверхности. Кроме того, авторами была доказана эффективность метода в отношении количественного определения наличия в сухом молоке пищевой добавки карбоната кальция, повышающего содержание кальция в готовом продукте, что было позднее подтверждено (Smith, 2013). При изготовлении сухого молока, в особенности предназначенного для детского питания, государственным стандартом РФ не допускается использование побочных продуктов переработки молока и/или пищевых добавок за исключением дигидрокверцетина (Petrov, 2017; Радаева, 2016). В этом контексте РС была апробирована как простой, быстрый, надежный, безреагентный метод выявления контрафакта при оценке параметров детских молочных смесей (Moros, 2007), йогурта, сыра, сливочного масла (Silva, 2021), на предмет определения фальсификации сывороткой (Almeida, 2011; de Almeida, 2012), крахмалом (de Almeida, 2012) или мальтодекстрином сухого молока (Júnior, 2016), меламином и мочевиной молока (Reiner, 2020), а также для обнаружения различных патогенных микроорганизмов (Reiner, 2020) и антибиотиков (Silva, 2021). Практическая ценность РС показана при получении быстрого и успешного результата в количественном определении фальсификации козьего (Zhang, 2025) и ослиного (Çolak, 2025) молока коровьим молоком, при этом данных ИК-Фурье оказалось недостаточно, т.к. в его спектре из-за превалирующей массовой доли влаги (около 87%) в составе молока присутствовал широкий пик, который не включается в спектр РС. Эффективность применения данного метода установлена также при изучении влияния рационов кормления на параметры состава сырого молока (Kostovska, 2025).

Таким образом, РС как простой, точный и чувствительный метод, несомненно, обладает потенциалом к применению в молочной промышленности. Поиск публикаций отечественных ученых, посвященных аналитическим

исследованиям молочной продукции с использованием РС, выявил их малочисленность и фрагментарность (Самарин, 2024; Беляков, 2024; Юрова, 2021). Так, работа Белякова и др. (2024) направлена на изучение возможности прослеживания ферментативным и биохимических изменений в молоке в процессе сквашивания с использованием метода РС. Исследование Самарина и др. (2024) посвящено изучению белковых компонентов молка, в частности спектральных характеристик казеина. Публикация Юровой и Фильчаковой (2021) носит методологический характер: разработка и стандартизация спектральных методов для контроля качества молочной продукции к целом, но не конкретно для РС. Авторы перечисленных выше исследований использовали для анализа образцов приборы иностранного производства (США, Европа, Азия). В связи с выше представленными фактами, восполнение указанных пробелов и апробация российских рамановских спектрометров для задач контроля качества молока и продуктов его переработки как на этапах производства, так и готовой продукции является особенно актуальным.-

Цель настоящей статьи: сопоставление ИК-спектроскопии и РС в аспекте анализа обезжиренного пастеризованного молока, полученного при разных температурных нагрузках, и определение спектральных диапазонов, наиболее чувствительных к температуре для совершенствования методик контроля качества молочной продукции в российской практике. Полученные данные позволят продолжить исследования по сопоставлению структурных и физико-химических изменений составных частей молочных систем и их спектральных характеристик для последующей разработки нового экспресс-метода контроля качества молочных продуктов с применением отечественного оборудования.

МАТЕРИАЛЫ И МЕТОДЫ

Объекты исследования

Объектами исследования для сопоставления ИК-спектров и Раман-спектров являлись образцы пастеризованного обезжиренного молока с различной температурой тепловой обработки: 70 ± 5 °C; 80 ± 5 °C и 90 ± 5 °C с выдержкой 30 секунд. В качестве контроля использовали обезжиренное молоко, нагретое до 45 ± 5 °C без выдержки.

Таблица 1

Кодировка исследуемых образцов пастеризованного обезжиренного молока

Table 1

Coding of the Pasteurized Skim Milk Samples studied

Наименование образца	Кодировка образца	
Обезжиренное молоко, обработанное при 45 ± 5 °C без выдержки	T45	
Обезжиренное молоко, обработанное при 70 ± 5 °C с выдержкой 30 секунд	П70	
Обезжиренное молоко, обработанное при 80 ± 5 °C с выдержкой 30 секунд	1 180	
Обезжиренное молоко, обработанное при 90 ± 5 °C с выдержкой 30 секунд	П90	

Выработку исследуемых образцов проводили с использованием оборудования Центра коллективного пользования Всероссийского научно-исследовательского института молочной промышленности (ЦКП ВНИМИ). Обезжиривание подогретого до $45\pm5\,^{\circ}\mathrm{C}$ цельного молока проводили с применением лабораторного сепаратора Alfa Laval (Alfa Laval Group, Швеция). Пастеризацию обезжиренного молока осуществляли на пилотной установке, разработанной специалистами ФГАНУ «ВНИМИ».

Процедура исследования

Получение ИК-спектров

Снятие спектров для оценки изменений белковой, углеводной и липидной составляющей молочной системы при различной температурной нагрузке проводили на базе Лаборатории технологий биотрансформации и консервирования ФГАНУ «ВНИМИ» с использованием ИК-спектрометра Инфраспек-1201 (ООО «Инфраспек», Россия) с приставкой МНПВО (материал кристалла призмы — ZnSe). Диапазон волновых чисел: 800–4500 см⁻¹, разрешение 4 см⁻¹. Перед каждым измерением проводили предварительное фоновое снятие спектра на чистой призме, контролировали отсутствие конденсата. Образец помещали на поверхность элемента в одинаковых лабораторных условиях, число усреднений при регистрации спектра — 20.

Получение рамановских спектров

Снятие спектров для фиксации температурно-зависимых изменений исследуемых образцов обезжиренного

молока проводили на базе ИФТТ РАН и МФТИ, Физтех на модификации прибора РС-ИК785 (ФГАОУ ВО «МФТИ (НИУ)», Россия) с длиной волны возбуждающего лазерного излучения 638 нм, на спектральном диапазоне 250–3600 см⁻¹ с разрешением 8 см⁻¹. Образец помещали на чистую подложку и проводили снятие спектра образца, контролируя отсутствие перегрева пробы, всплесков флуоресценции. Число усреднений при регистрации спектра — 20.

Сбор спектральных характеристик

Для проведения сопоставления методов предварительно осуществляли подготовку массивов данных. Из полученных ИК- и Раман-спектров вычитали фон и экспортировали полученные результаты в табличный формат для последующего анализа. Затем проводили проверку сходимости результатов 20-ти измерений для каждого образца, в случае выбросов — повторяли измерение. Для получения усредненных значений интенсивности спектров использовали программное обеспечение Microsoft Excel.

Предварительная подготовка спектров

Для обеспечения корректного сравнения спектральных характеристик для каждого усредненного спектра выполняли векторную нормализацию без сглаживания и дифференцирования.

Визуализация спектров

Визуализацию усредненных и предварительно обработанных ИК- и Раман-спектров молока проводили на языке программирования Python с использованием библиотек Pandas и Matplotlib.

Анализ спектральных характеристик

Для объективной оценки различий спектральных характеристик исследуемых образцов применяли метод главных компонент (PCA). Анализ главных компонент выполняли в библиотеке scikit-learn (v.1.5.0) на языке программирования Python с последующим построением графиков группировки образцов по главным компонентам (PC1 и PC2) и вклада спектральных областей в различия образцов с интерпретацией информативных диапазонов в библиотеке Matplotlib.

РЕЗУЛЬТАТЫ

Для достижения поставленной цели исследования нами были получены ИК- и Раман-спектры обезжиренного молока с разной температурой пастеризации и проведен анализ картины изменений спектральных характеристик образцов в зависимости от термической нагрузки на систему. Для каждого метода выполняли хемометрическую оценку полученных данных методом главных компонент, обеспечивающую объективность сопоставления ИК- и Раман-спектрометрии и визуализацию различий образцов. Подобранный нами подход позволяет не только зафиксировать характерные полосы и их изменения от образца к образцу, но и определить, какие именно структурные компоненты молочной системы наиболее чувствительны к температурным воздействиям.

Исследование ИК-спектров обезжиренного пастеризованного молока

Для ИК-спектров всех образцов (Рисунок 1) выявлены характерные полосы в волновых диапазонах 1040–1150 см⁻¹, 1230–1300 см⁻¹, 1530–1550 см⁻¹, 1640–1660 см⁻¹,

2850–2950 см⁻¹ и 3200–3400 см⁻¹. Однако, как визуально, так и в численном эквиваленте значения поглощения не имело значимых различий: наибольшее изменение в величине поглощения зафиксировано для пиков в области 3200–3400 см⁻¹ (0,024 отн.ед.).

Поскольку ИК-спектры контроля и пастеризованных образцов молока практически не имели явных отличий, нами был проведен анализ главных компонент для оценки значимости различий откликов в выявленных областях волновых чисел (Рисунок 2A и 2Б).

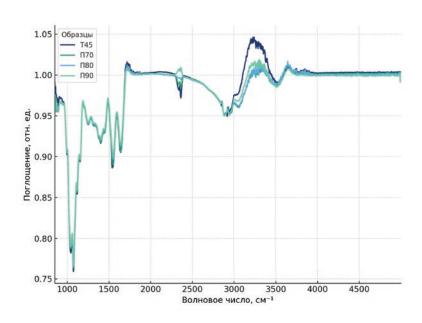

Анализ ИК-спектров экспериментальных образцов методом главных компонент зафиксировал характерные изменения, связанные с пастеризацией обезжиренного молока (Рисунок 2А), при совместной оценке вклада каждого из выявленных пиков (Рисунок 2Б). Первая главная компонента (РС1) объясняла 86,3% дисперсии данных и четко разделяла контрольный образец от пастеризованных. Вторая компонента (РС2), обосновывавшая 12,2% дисперсии, отразила различия меду образцами, нагретыми при различных температурах. Анализ графиков вклада главных компонент в различия показал, что наибольший вклад в формирование РС1

Рисунок 1

ИК-спектры образцов обезжиренного молока с разной термической обработкой

Figure 1

IR Spectra of Skim Milk Samples with Different Heat Treatments

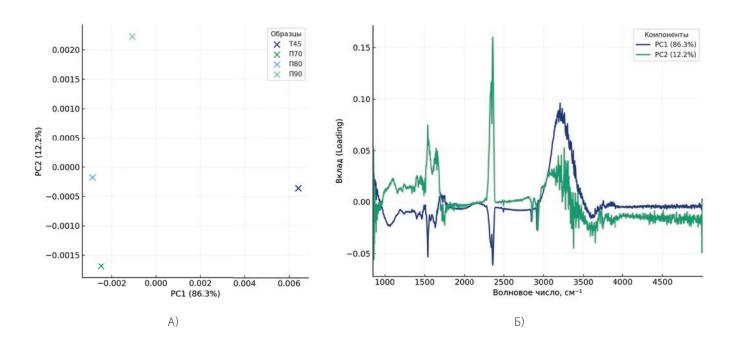


Рисунок 2

Figure 2

Визуализация результатов оценки различий спектральных характеристик образцов обезжиренного молока с разной термической обработкой методов главных компонент (PCA)

Visualization of the Results of Assessing the Differences in the Spectral Characteristics of Skim Milk Samples with Different Heat Treatments using Principal Component Analysis (PCA)

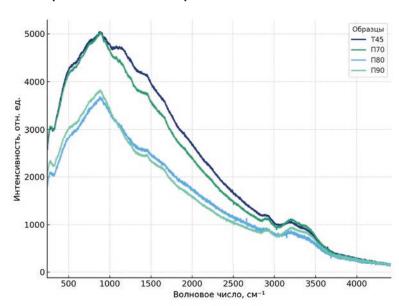
Примечание. А — Группировка образцов по главным компонентам (PCA scores plot). Б — Спектральные области, вносящие наибольший вклад в различия образцов (PCA loadings plot).

Note. A — Grouping of samples by principal components (PCA scores plot). B — Spectral regions that contribute most to sample differences (PCA loadings plot).

и РС2 вносят области 1600–1700 см⁻¹, 1500–1580 см⁻¹, 1050–1100 см⁻¹, 2850–2950 см⁻¹, а также полоса в области 3200–3400 см⁻¹. Таким образом, в результате обработки ИК-спектральных характеристик обезжиренного пастеризованного молока, метод РСА позволил объективно разделить образцы по температурной нагрузке и оценить значимость вклада диапазонов волновых чисел, выявленных на графике ИК-спектров.

Исследование Раман-спектров обезжиренного пастеризованного молока

Различия в рамановских спектрах образцов обезжиренного пастеризованного молока визуально имеют большие различия, в сравнении с ИК-спектрами аналогичных образцов. В результате спектрального анализа


получен ряд характерных полос в области 280–520 см⁻¹, 800–850 см⁻¹, 1450 см⁻¹, 1660 см⁻¹, 1200–1700 см⁻¹, 2850–2950 см⁻¹ и 3200–3500 см⁻¹. Спектральный график экспериментальных образцов четко отражает разницу в интенсивности отклика обезжиренного молока с разной температурой пастеризации, заключающуюся в снижении показателя (Т45»П90) (Рисунок 3).

Для видимых пиков в области 280–520 см-1 и 800–850 см-1 интенсивность снижалась приблизительно на 1000 отн.ед. для образцов, пастеризованных при 80 и 90 °С. Пики в диапазоне волновых чисел 1450 см-1 и 1660 см-1 аналогичным образом претерпели изменения — до 1500 отн ед. Зафиксированные изменения при 2850–2950 см-1 не так ярко выражены, как в случае с вышеперечисленными откликами, однако тенденция к снижению интенсивности для образцов П80

Рисунок 3

Рамановские спектры образцов обезжиренного молока с разной термической обработкой

Figure 3 Raman Spectra of Skim Milk Samples with Different Heat Treatments

и П90 оставалась. Изменения в интенсивности широких куполообразных пиков в области волновых чисел 3200-3500 см-1 на построенном графике спектров не являются показательными.

Так же, как и в случае исследования ИК-спектров экспериментальных образцов, нами была проведена оценка различий спектральных характеристик образцов молока и вклада отдельных диапазонов волновых чисел в них (Рисунок 4).

Метод анализа главных компонент позволил четко разделить спектры по режимам пастеризации (Рисунок 4А). Первая компонента (РС1), объясняющая 85,7% дисперсии данных, отделяет контрольный образец от пастеризованных. Вторая компонента (РС2) обосновывает 13,7 % дисперсии и отражает различия внутри группы нагретых образцов (70-90°С). Оценка нагрузочных графиков (Рисунок 4Б) показала, что наибольший вклад в разделение образцов вносят полосы в областях 800-1000 см⁻¹, 1450 см⁻¹, 2850-2950 см⁻¹ и 3200-3500см-1. Таким образом, метод анализа главных компонент позволил четко разделить все экспериментальные образцы и определить вклад выявленных спектральных полос в различия.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

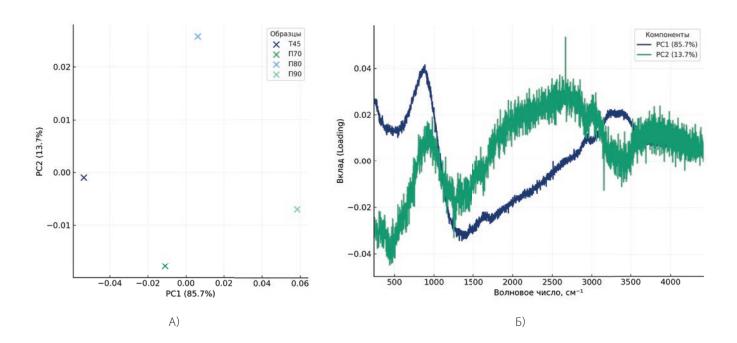

В ходе анализа ИК- и Раман-спектров обезжиренного молока с разной температурой пастеризации выявлен ряд характерных полос и их изменения, отражающие влияние температурной обработки на составные части молочной системы. Зафиксированы отклики в области 1040-1150 см⁻¹, 1230-1300 см⁻¹, 1530-1550 см⁻¹, 1640-1660 см⁻¹, 2850-2950 см⁻¹ и 3200-3400 см⁻¹, 3200-3400 см-1 (Таблица 2). Величины изменений интенсивности поглощения были незначительными, что согласуется с визуально схожей формой спектров контрольного и пастеризованных образцов. Несмотря на видимое отсутствие различий, метод РСА позволил объективно разделить образцы по температурной нагрузке и оценить значимость вклада диапазонов волновых чисел, выявленных на графике ИК-спектров. РС позволила зафиксировать выраженные различия: обнаружены отчетливые изменения пиков в областях волновых чисел 280-520 см⁻¹ ,800-850 см⁻¹ , 1450 см⁻¹ , 1660 см⁻¹ , 1200–1700 см-1, 2850–2950 см-1 и 3200–3500 см-1 (Таблица 3). Метод РСА подтвердил вклад всех обнаруженных полос в различия между образцами, разделение глав-

Рисунок 4

Визуализация результатов оценки различий спектральных характеристик образцов обезжиренного молока с разной термической обработкой методов главных компонент (РСА)

Figure 4

Visualization of the Results of Assessing the Differences in the Spectral Characteristics of Skim Milk Samples with Different Heat Treatments using Principal Component Analysis (PCA)

Примечание. А — Группировка образцов по главным компонентам (PCA scores plot). Б — Спектральные области, вносящие наибольший вклад в различия образцов (PCA loadings plot).

Note. A — Grouping of samples by principal components (PCA scores plot). B — Spectral regions that contribute most to sample differences (PCA loadings plot).

ных компонент более четкое, в сравнении с хемометрической оценкой ИК-характеристик.

Интерпретация результатов ИК-спектров обезжиренного молока

В ИК-спектрах обезжиренного молока наибольшие изменения были связаны с амидными полосами (изменения белковых компонентов). При температурах 80-90°С одним из наиболее выраженных по снижению поглощения являлся пик амида II ($1530-1550 \text{ см}^{-1}$), что согласуется с литературными данными о чувствительности этой зоны к тепловым нагрузкам (Andrade, 2019; Markoska, 2019). Murphy В. М. et al. (2014) при регистрации изменений вторичной структуры белков с использованием ИК-Фурье-спектроскопии также зафиксировали изменения данной области при трансформации молекул. Обнаруженный отклик в области амид I (1640-1660 см-1) свидетельствует о частичной денатурации сывороточных белков и изменении соотношения α-спиралей и β-структур в молекулах (Acuña-Nelson, 2024). Полученные нами данные сопоставимы с результатами исследования (Acuña-Nelson, 2024), в котором ученые обнаружили сдвиги, характеризующие изменения конформации белков, в области амида І: смещение $c \sim 1621 \text{ см}^{-1} \text{ к} \sim 1600 \text{ см}^{-1}$. Полученные данные интерпретировались как признак агрегации белков при высокой температуре, что также согласуется с ранее доказанными эффектами при термической обработке молока (Калугина, 2022; Кобзева, 2016). Отсутствие смещения полосы в ИК-спектре наших образцов может быть связано с меньшей температурной нагрузкой, в сравне-

нии с ультрапастеризацией в (Acuña-Nelson, 2024). Для оценки конформации вторичной структуры белков в комплексе с полосой амид I часто используют полосу амид III, выявленную в диапазоне 1230–1300 см-1 (Stani, 2020). Результаты нашего исследования соотносятся с данными (Grewal, 2017), причем авторы в исследовании выделяют именно эту полосу как оптимальную для детектирования изменений в жидких образцах молока.

Таблица 2

Полосы ИК-спектров исследуемых образцов, характеризующие трансформации составных частей молока

Table 2

IR Spectral Bands of the Studied Samples Characterizing the Transformations of Milk Components

Диапазон волновых чисел, см ⁻¹	Характеристика изменений
1040–1150	Полоса, характеризующая колебания С–О и С–С связей (Ribeiro, 2023)
1230–1300	Полоса амид III, характеризующая комплексные колебания С–N и δ(N–H) связей (Stani, 2020; Grewal, 2017)
1530–1550	Полоса амид II, связанная с δ(N–H) и v(C–N) связей (Murphy, 2014)
1640–1660	Полоса амид I, обусловленная v(C=O) пептидной связи (Acuña-Nelson, 2024)
2850-2950	Полосы валентных колебаний С–Н связей липидных и белковых компонентов молока (Rachah, 2021; Grewal, 2017)
3200-3400	Область, соответствующая валентным колебаниям О–Н связей (вода, гидроксильные группы белков и углеводов) (Suha Elderderi, 2020)

Примечание. * δ — деформационные колебания химических связей; v валентные колебания (растяжение) химических связей

Note.* δ — deformation vibrations of chemical bonds; ν — stretching vibrations of chemical bonds

Область в 1040-1150 см-1 ассоциирована с изменениями углеводной составляющей, в первую очередь лактозой (Наіхіа, 2022). Значения волновых чисел, полученные нами, согласуются с результатами работы (Ribeiro, 2023), в которой данная область спектра использовалась для количественного определения лактозы и оценки ее структурных изменений. Выявленные в области 2850-2950 см-1 отклики относятся к трансформациям остаточного количества липидов в обезжиренном молоке совместно с изменениями белковой природы. Сдвиг или снижение/повышение поглощения

в данной области спектра может указывать на модификацию липидо-белковых комплексов и возможные вариации гидрофобных взаимодействий (Rachah, 2021; Grewal, 2017). Характеристики жировой фазы молока при 2850–2950 см-1 также сопоставимы с диапазоном в исследовании (Rachah, 2023), где значения поглощения образцов молока в упомянутой области используются для оценки состояния жиров и выявления метаболических нарушений у коров по показателям молока. Наиболее выраженные изменения в наших образцах обнаружены в области 3200-3400 см⁻¹, которая соответствует в основном трансформациям водной части и водородных связей. Этот результат также согласуется с данными Suha Elderderi et al. (2020), показавших, что интенсивность и форма широкой полосы O-H/N-H отражают перераспределение влаги и изменения гидратной оболочки белков молока при термическом воздействии. На графике также можно выделить области, не относящиеся к трансформациям компонентов молока: пики в 2300–2350 см⁻¹ в литературе трактуются как ассиметричное колебание СО, (артефакт атмосферного углекислого газа) (Schott, 2021).

Интерпретация результатов Раман-спектров обезжиренного молока

Раман-спектры образцов обезжиренного пастеризованного молока визуально имели большие различия, в сравнении с ИК-спектрами аналогичных образцов. Данная особенность может быть обоснована тем, что наличие воды в образцах не оказывает значимого влияния на процесс получения рамановских спектров молока, в отличие от ИК-спектроскопии, чувствительность которой в значимой степени зависит от наличия воды в образце (Fhuaráin, 2024). Для всех образцов типичными являлись интенсивные пики в области 280-1000 см-1, относящиеся к трансформации углеводной части (Reiner, 2020). Диапазон волновых чисел 280-520 см⁻¹ является неоднозначным с точки зрения характеристики углеводной части молока, поскольку литературные данные по этом вопросу не однородные. Так, в работах (Zhang, 2020; Silva, 2021) авторы утверждают, что пики в области 300-305 см-1 ассоциированы с химическими превращениями лактозы под действием температуры. При этом, другие исследования (Не, 2019; Buckova, 2016; Li, 2015; Khan, 2023) охарактеризовали перечень полос в 355 см⁻¹, 455 см⁻¹, 400-600 см⁻¹, 1085 см⁻¹ и 1087 см⁻¹ как показатели изменения лактозы

в молоке. Подобные литературные данные могут свидетельствовать о зависимости спектральных характеристик от прибора и протокола измерений (Fhuaráin, 2024), что подчеркивает важность калибровки и валидации методик на каждом отдельном спектрометре. Уменьшение пика около 800 см-1 (С-О-С колебания лактозы) согласуется с данными Reiner et al. (2020) и Li et al. (2015), где также сообщалось о чувствительности полосы к температурной обработке. Характеристика белковых компонентов молока приходилась на области 1200-1700 см⁻¹, липидов — 2800-3000 см⁻¹. Ослабление полос около 1450 см⁻¹ и в диапазоне 2850–2950 см⁻¹, свидетельствующее об изменении белково-липидных взаимодействий, также было зафиксировано в работах Fitzgerald et al. (2023) и Almeida et al. (2011).

Таблица 3

Полосы Раман-спектров образцов обезжиренного пастеризованного молока, характеризующие трансформацию его составных частей

Table 3

Raman Spectral Bands of Skim Pasteurized Milk Samples **Characterizing the Transformation of its Constituents**

Диапазон волновых чисел, см ⁻¹	Характеристика изменений
280–520; 800–850	C–O, C–C колебания углеводной части молока (Reiner, 2020; Li, 2015)
1450	Деформационные колебания боковых цепей белков и липидов (δ(CH ₂), δ(CH ₃)) (Fitzgerald, 2023)
1660	v(C=O) пептидных связей и/или C=C колебания (Fitzgerald, 2023)
2850-2950	v(CH ₂), v(CH ₃) липидных цепей (Almeida, 2011)
3200–3500	Характеристика водной части образцов (Unal, 2018)

Примечание. * δ — деформационные колебания химических связей; v валентные колебания (растяжение) химических связей

Note. * δ — deformation vibrations of chemical bonds; v — stretching vibrations of chemical bonds

Изменения в области 2850-2950 см⁻¹ в ранее проведенных исследованиях (Almeida, 2011) описаны как пики жировых компонентов молока. В наших образцах содержится остаточное количество липидов, в связи с чем, вероятно, разница в интенсивности не так существенна, как в случае с лактозой и белками, однако тенденция к снижению показателя для образцов П80 и П90 оставалась. Широкий куполообразный пик в диапазоне

3200-3500 см⁻¹ относится к изменениям водной части образцов. Согласно (Unal, 2018), данная область связана с валентными колебаниями O-H / N-H и не вносит значимый вклад в оценку уровня тепловой нагрузки на систему.

Ограничения исследования

Ограничением нашего исследования является проведение анализа только на обезжиренном молоке, в лабораторных условиях и с использованием российских спектрометров. Влияние жировой фазы, применяемых в промышленности режимов обработки молочного сырья (в том числе других температурных режимов ультрапастеризация и др.), характеристик и условий измерения на других приборах на изменение спектральных характеристик молочной системы не оценено.

ЗАКЛЮЧЕНИЕ

В проведенном исследовании установлено, что ИК-спектроскопия позволяет фиксировать изменения в структуре белков, лактозы, липидов и липидо-белковых комплексов молока, однако различия между контрольным и пастеризованными образцами выражены слабо. В то же время метод РС продемонстрировал более высокую чувствительность к температурным воздействиям и позволил однозначно разграничить образцы обезжиренного молока по влиянию температурной нагрузке на систему. Полученные данные подтверждают, что РС обладает значительным потенциалом для создания нового экспресс-метода на ее основе. Ключевым преимуществом метода является низкая чувствительность к водному фону, обеспечивающая точность при выявлении трансформаций составных частей молока. Данная особенность представляет РС в особенно выгодном свете в вопросе внедрения на молочном предприятии для получения быстрых и точных результатов исследований.

Основными ограничениями нашего исследования является изучение только пастеризованного обезжиренного молока, без учета других режимов температурной обработки и молока разной жирности. Кроме того, сравнение методов ИК- и Раман-спектроскопии проводили только с использованием российского оборудования. Таким образом, в дальнейших исследованиях целесообразным представляется рассмотрение различных видов молока (разные массовые доли жира

и белка), и молочных продуктов (кисломолочные продукты, творог и тд). Интерес вызывает также переход к количественной оценке содержания в молоке и молочных продуктов основных составных частей.

АВТОРСКИЙ ВКЛАД

Ирина Александровна Барковская: проведение исследования, методология, создание черновика рукописи, создание рукописи и ее редактирование, визуализация, администрирование данных, администрирование проекта.

Светлана Николаевна Туровская: верификация данных, создание черновика рукописи, редактирование черновика рукописи, формальный анализ.

Елена Евгеньевна Илларионова: проведение исследования, методология, верификация данных.

Владислав Юрьевич Ярышев: проведение исследования, методология, верификация данных.

Владимир Владимирович Блиадзе: проведение исследования, методология, верификация данных.

Владимир Владимирович Кондратенко: проведение исследования, методология, верификация данных.

AUTHOR CONTRIBUTIONS

Irina A. Barkovskaya: investigation, methodology, draft manuscript preparation, manuscript writing and editing, visualization, data administration, project administration.

Svetlana N. Turovskaya: data verification, draft manuscript preparation, draft manuscript editing, formal analysis.

Elena E. Illarionova: investigation, methodology, data verification.

Vladislav Yu. Yaryshev: investigation, methodology, data verification.

Vladimir G. Bliadze: investigation, methodology, data verification.

Vladimir V. Kondratenko: investigation, methodology, data verification.

ЛИТЕРАТУРА

- Абдуллаева, Л. В., & Бедретдинова, С. А. (2023). Аналитическая оценка системы подтверждения соответствия молока и молочной продукции обязательным требованиям. Food Metaengineering, 1(4). https://doi.org/10.37442/fme.2023.4.31
- Беляков, М. В., Самарин, Г. Н., & Ефременков, И. Ю. (2024). Исследование скисания молока методом рамановского рассеяния. Техника и оборудование для села, (5), 40-44. https://doi.org/10.33267/2072-9642-2024-5-40-44
- Галстян, А. Г., Петров, А. Н., Юрова, Е. А., Зобкова, З. С., Пряничникова, Н. С., & Фильчакова, С. А. (2025). Киберфизические компоненты пищевой метаинженерии. Вестник РАН, (6), 77-84. https://doi.org/10.31857/S0869587325060099
- Калугина, Д. Н., Юрова, Е. А. (2022). Обоснование определения индекса азота сывороточного белка для оценки белкового состава молока. Молочная промышленность, (7), 35-37. https://doi.org/10.31515/1019-8946-2022-07-35-37
- Кобзева, Т. В., Юрова, Е. А. (2016). Оценка показателей качества и идентификационных характеристик сухого молока. Молочная промышленность, (3), 32–35.
- Радаева, И. А., Червецов, В. В., Галстян, А. Г., Туровская, С. Н., Илларионова, Е. Е., & Петров, А. Н. (2016). Межгосударственный стандарт на сухое молоко. Молочная промышленность, (3), 36–38.
- Самарин, Г. Н., & Беляков, М. В. (2024). Оптическая спектральная диагностика казеина. Известия вузов. Пищевая технология, (1), 112–116. https://doi.org/10.26297/0579–3009.2024.1.18
- Харитонов, В. Д., Юрова, Е. А., & Чигасов, А. И. (2012). Спектральный анализ в ближней ИК-области. Молочная промышленность, (2), 55–56.
- Хуршудян, С. А., & Галстян, А. Г. (2018). Качество пищевых продуктов. Термины, определения и противоречия. Контроль качества продукции, (1), 48–49.

- Юрова, Е. А., & Фильчакова, С. А. (2021). Разработка методик измерений, обеспечивающих проведение испытаний продукции по всему спектру показателей и идентификационных характеристик продукта. Идеи академика В. Д. Харитонова в наукоёмких технологиях переработки молока (с. 243–262). Москва: Изд-во ВНИМИ.
- Acuña-Nelson, S. M., Henríquez-González, L. P., Sepúlveda-Villagra, V. B., Opazo-Navarrete, M., Durán-Agüero, S., & Parra-Flores, J. E. (2024). Effect of UHT thermal treatment on the secondary structures of milk proteins: Insights from FTIR analysis and potential allergenic activity. International Journal of Food Science, 1880779. https://doi.org/10.1155/2024/1880779
- Almeida, M. R., Oliveira, K. D. S., Stephani, R., & de Oliveira, L. F. C. (2011). Fourier-transform Raman analysis of milk powder: A potential method for rapid quality screening. Journal of Raman Spectroscopy, 42(7), 1548–1552. https://doi.org/10.1002/jrs.2893
- Andrade, J., Pereira, C. G., de Almeida Junior, J. C., & Carvalho Ramos, C. V. (2019). FTIR-ATR determination of protein content to evaluate whey protein concentrate adulteration. LWT, 99, 166-172. https://doi.org/10.1016/j.lwt.2018.09.043
- Antunes, C., Bexiga, R., Pinto, C., Roseiro, L. C., & Quaresma, M. A. G. (2023). Cow's milk in human nutrition and the emergence of plant-based milk alternatives. Foods, 12(1), 99. https://doi.org/10.3390/foods12010099
- Beckett, E. L., Cassettari, T., Starck, C., & Fayet-Moore, F. (2024). Dairy milk: There are alternatives but no equivalents. Food Science & Nutrition, 12(10), 8470-8482. https://doi.org/10.1002/fsn3.4301
- Buckova, M., Vaskova, H., & Bubelova, Z. (2016). Raman spectroscopy as a modern tool for lactose determination. Energy, 13, 108–114.
- Çolak, S. (2025). Simultaneous raman and FTIR-ATR spectroscopy techniques combined with chemometrics: Characterization and comparison of donkey milk adulteration. Journal of Raman Spectroscopy, 56, 598–608. https://doi.org/10.1002/jrs.6812
- de Almeida, M. R., de Sá Oliveira, K., Stephani, R., & Cappa de Oliveira, L. F. (2012). Application of FT-raman spectroscopy and chemometric analysis for determination of adulteration in milk powder. Analytical Letters, 45(17), 2589–2602. https://doi.org/10.1080/00032719.2012.698672
- Grewal, M. K., Chandrapala, J., Donkor, O., Apostolopoulos, V., Stojanovska, L., & Vasiljevic, T. (2017). Fourier transform infrared spectroscopy analysis of physicochemical changes in UHT milk during accelerated storage. International Dairy Journal, 66, 99-107. https://doi.org/10.1016/j.idairyj.2016.11.014
- He, H., Sun, D.-W., Pu, H., Chen, L., & Lin, L. (2019). Applications of Raman spectroscopic techniques for quality and safety evaluation of milk: A review of recent developments. Critical Reviews in Food Science and Nutrition, 59(5), 770-793. https://doi.org/10.1080/10408398.2018.1528436
- Júnior, P. H. R., de Sá Oliveira, K., de Almeida, C. E. R., De Oliveira, L. F. C., Stephani, R., da Silva Pinto, M., de Carvalho, A. F., & Perrone, Í. T. (2016). FT-Raman and chemometric tools for rapid determination of quality parameters in milk powder: Classification of samples for the presence of lactose and fraud detection by addition of maltodextrin. Food Chemistry, 196, 584–588. https://doi.org/10.1016/j.foodchem.2015.09.055
- Khan, H.H., McCarthy, U., Esmonde-White, K., Casey, I., O'Shea, N. (2023). Potential of Raman spectroscopy for in-line measurement of raw milk composition. Food Control, 152, 109862. https://doi.org/10.1016/j.foodcont.2023.109862
- Kostovska, R., Cruz, J., Drouin, G., Horan, B., Tobin, J. T., O'Callaghan, T. F., Hettinga, K., Kelly, A. L., Gómez-Mascaraque, L. G. (2025). Use of Raman spectroscopy as a rapid tool to discriminate milk deriving from different pasturebased diets and breeds in a seasonal, spring-calving dairy production system. Journal of Dairy Science, 108(9), 9205-9221. https://doi.org/10.3168/jds.2025-26489
- Li, M., Chen, J., Xu, J., Fu, S., & Gong, H. (2015). Determination of lactose in milk by Raman spectroscopy. Analytical Letters, 48(8), 1333–1340. https://doi.org/10.1080/00032719.2014.979358
- Markoska, T., Huppertz, T., M. K., & Vasiljevic, T. (2019). Structural changes of milk proteins during heating of concentrated skim milk determined using FTIR. International Dairy Journal, 89, 21–30. https://doi.org/10.1016/j.idairyj.2018.08.001
- McGoverin, C. M., Clark, A. S. S., Holroyd, S. E., & Gordon, K. C. (2010). Raman spectroscopic quantification of milk powder constituents. Analytica Chimica Acta, 673(1), 26–32. https://doi.org/10.1016/j.aca.2010.05.014
- Mohammadi, S., Gowen, A., Luo, J., & O'Donnell, C. (2024). Prediction of milk composition using multivariate chemometric modelling of infrared, Raman and fluorescence spectroscopic data: A review. Food Control, 165, 110658. https://doi.org/10.1016/j.foodcont.2024.110658

- Moros, J., Garrigues, S., & de la Guardia, M. (2007). Evaluation of nutritional parameters in infant formulas and powdered milk by Raman spectroscopy. *Analytica Chimica Acta*, *593*(1), 30–38. https://doi.org/10.1016/j.aca.2007.04.036
- Murphy, B. M., D'Antonio, J., Manning, M. C., & Al-Azzam, W. (2014). Use of the amide II infrared band of proteins for secondary structure determination and comparability of higher order structure. *Curr Pharm Biotechnol*, 15(9), 880–9. https://doi.org/10.2174/1389201015666141012181609.
- Ní Fhuaráin, A. M., O'Donnell, C. P., Luo, J., & Gowen, A. A. (2024). A review on MIR, NIR, fluorescence and raman spectroscopy combined with chemometric modeling to predict the finctional properties of raw bovine milk. *ACS Food Science & Technology*, 4(10), 2258–2271. https://doi.org/10.1021/acsfoodscitech.3c00510
- Petrov, A. N., Galstyan, A. G., Radaeva, I. A., Turovskaya, S. N., Illarionova, E. E., Semipyatnyi, V. K., Khurshudyan, S. A., Dubuske, L. M., & Krikunova, L. N. (2017). Indicators of quality of canned milk: russian and international priorities. *Foods and Raw Materials*, *5*(2), 151–161. https://doi.org/10.21603/2308-4057-2017-2-151-161
- Rachah, A., Reksen, O., Tafintseva, V., Stehr, F. J. M., Rukke, E. O., Prestløkken, E., Martin, A., Kohler, A., & Afseth, N. K. (2021). Exploring dry-film FTIR spectroscopy to characterize milk composition and subclinical ketosis throughout a cow's lactation. *Foods*, *10*(9), 2033. https://doi.org/10.3390/foods10092033
- Reiner, J., Protte, K., & Hinrichs, J. (2020). Investigation of the applicability of Raman spectroscopy as online process control during consumer milk production. *ChemEngineering*, 4(3), 45. https://doi.org/10.3390/chemengineering4030045
- Ribeiro, D. C. S. Z., Neto, H. A., Lima, J. S., de Assis, D.C.S., Keller, K.M., Campos, S.V.A., Oliveira, D.A., & Fonseca, L.M. (2023). Determination of the lactose content in low-lactose milk using FTIR and CNN. *Heliyon*, *9*(1), e12898. https://doi.org/10.1016/j.heliyon.2023.e12898
- Schott, J. A., Do-Thanh, C.L., Shan, W., Puskar, N.G., Dai, S., & Mahurin, S.M. (2021). FTIR investigation of CO₂ sorption in porous ionic liquids. *Green Chemical Engineering*, 2(4), 392–401. https://doi.org/10.1016/j.gce.2021.10.002
- Silva, M.G., de Paula, I.L., Stephani, R., Edwards, H.G., & de Oliveira, L.F.C. (2021). Raman spectroscopy in the quality analysis of dairy products: A literature review. *Journal of Raman Spectroscopy*, *52*(12), 2444–2478. https://doi.org/10.1002/jrs.6214
- Smith, G. P. S., Gordon, K. C., & Holroyd, S. E. (2013). Raman spectroscopic quantification of calcium carbonate in spiked milk powder samples. *Vibrational Spectroscopy*, *67*, 87–91. https://doi.org/10.1016/j.vibspec.2013.04.005
- Stani, C., Vaccari, L., Mitri, E., & Birarda, G. (2020). FTIR investigation of the secondary structure of type I collagen: New insight into the amide III band. *Spectrochimica Acta Part A, 229*, 118006. https://doi.org/10.1016/j.saa.2019.117653
- Suha Elderderi, Leman-Loubière, C., Wils, L., Henry, S., Bertrand, D., Byrne, H. J., Igor Chourpa, Cécile Enguehard-Gueiffier, Munnier, E., Elbashir, A. A., Boudesocque-Delaye, L., & Bonnier, F. (2020). *ATR-IR spectroscopy for rapid quantification of water content in deep eutectic solvents*. Journal of Molecular Liquids, *311*, 113361–113361. https://doi.org/10.1016/j.molliq.2020.113361
- Yan, H., Yu, Z., & Liu, L. (2022). Lactose crystallization and Maillard reaction in simulated milk powder based on the change in water activity. *Journal of Food Science*, 87(11), 4956–4966. https://doi.org/10.1111/1750–3841.16267
- Zhang, Z. Y. (2020). The statistical fusion identification of dairy products based on extracted Raman spectroscopy. *RSC Advances*, *10*(50), 29682–29687. https://doi.org/10.1039/D0RA06318E
- Zhang, Y., Shen, B., Wang, H., & Zhao, Y. (2025). Quantification of cow milk in adulterated goat milk using Raman spectroscopy and machine learning. *Microchemical Journal*, *215*, 114319. https://doi.org/10.1016/j.microc.2025.114319
- Zhang, Z.-Y., Su, J.-S., & Xiong, H.-M. (2025). Technology for the quantitative identification of dairy products based on raman spectroscopy, chemometrics, and machine learning. *Molecules*, *30*(2), 239. https://doi.org/10.3390/molecules30020239

REFERENCES

- Abdullaeva, L. V., & Bedretdinova, S. A. (2023). Analytical assessment of conformity system for milk and dairy products. Food Metaengineering, 1(4). (In Russ.) https://doi.org/10.37442/fme.2023.4.31
- Belyakov, M. V., Samarin, G. N., & Efremenkov, I. Yu. (2024). Study of milk souring by Raman scattering. Engineering for Rural Areas, (5), 40-44. (In Russ.) https://doi.org/10.33267/2072-9642-2024-5-40-44
- Galstyan, A. G., Petrov, A. N., Yurova, E. A., Zobkova, Z. S., Pryanichnikova, N. S., Filchakova, S. A. (2025). Cyber-physical components of food meta-engineering. Herald of the Russian Academy of Sciences, (6), 77–84. (In Russ.) https:// doi.org/10.31857/S0869587325060099
- Kalugina, D. N., & Yurova, E. A. (2022). Justification of the whey-protein nitrogen index for estimation of milk protein composition. Dairy Industry, (7), 35-37. (In Russ.) https://doi.org/10.31515/1019-8946-2022-07-35-37
- Kobzeva, T. V., & Yurova, E. A. (2016). Quality and identification characteristics of milk powder. Dairy Industry, (3), 32-35. (In Russ.)
- Radaeva, I. A., Chervetsov, V. V., Galstyan, A. G., Turovskaya, S. N., Illarionova, E. E., & Petrov, A. N. (2016). Interstate standard for milk powder. Dairy Industry, (3), 36–38. (In Russ.)
- Samarin, G. N., & Belyakov, M. V. (2024). Optical spectral diagnostics of casein. Proceedings of Higher Education Institutions. Food Technology, (1), 112-116. (In Russ.) https://doi.org/10.26297/0579-3009.2024.1.18
- Kharitonov, V. D., Yurova, E. A., & Chigasov, A. I. (2012). NIR spectral analysis. Dairy Industry, (2), 55–56. (In Russ.)
- Khurshudyan, S. A., & Galstyan, A. G. (2018). Quality of food products: Terms and contradictions. Product Quality Control, (1), 48–49. (In Russ.)
- Yurova, E. A., Filchakova, S. A. (2021). Development of measurement methods to ensure product testing across the entire spectrum of indicators and product identification characteristics. Academician V. D. Kharitonov's ideas in science-intensive milk processing technologies (pp. 243–262). Moscow: VNIMI.
- Acuña-Nelson, S. M., Henríquez-González, L. P., Sepúlveda-Villagra, V. B., Opazo-Navarrete, M., Durán-Agüero, S., & Parra-Flores, J. E. (2024). Effect of UHT thermal treatment on the secondary structures of milk proteins: Insights from FTIR analysis and potential allergenic activity. International Journal of Food Science, 1880779. https://doi. org/10.1155/2024/1880779
- Almeida, M. R., Oliveira, K. D. S., Stephani, R., & de Oliveira, L. F. C. (2011). Fourier-transform Raman analysis of milk powder: A potential method for rapid quality screening. Journal of Raman Spectroscopy, 42(7), 1548–1552. https://doi.org/10.1002/jrs.2893
- Andrade, J., Pereira, C. G., de Almeida Junior, J. C., & Carvalho Ramos, C. V. (2019). FTIR-ATR determination of protein content to evaluate whey protein concentrate adulteration. LWT, 99, 166–172. https://doi.org/10.1016/j. lwt.2018.09.043
- Antunes, C., Bexiga, R., Pinto, C., Roseiro, L. C., & Quaresma, M. A. G. (2023). Cow's milk in human nutrition and the emergence of plant-based milk alternatives. Foods, 12(1), 99. https://doi.org/10.3390/foods12010099
- Beckett, E. L., Cassettari, T., Starck, C., & Fayet-Moore, F. (2024). Dairy milk: There are alternatives but no equivalents. Food Science & Nutrition, 12(10), 8470–8482. https://doi.org/10.1002/fsn3.4301
- Buckova, M., Vaskova, H., & Bubelova, Z. (2016). Raman spectroscopy as a modern tool for lactose determination. Energy, 13, 108–114.
- Colak, S. (2025). Simultaneous raman and FTIR-ATR spectroscopy techniques combined with chemometrics: Characterization and comparison of donkey milk adulteration. Journal of Raman Spectroscopy, 56, 598–608. https://doi.org/10.1002/jrs.6812
- de Almeida, M. R., de Sá Oliveira, K., Stephani, R., & Cappa de Oliveira, L. F. (2012). Application of FT-raman spectroscopy and chemometric analysis for determination of adulteration in milk powder. Analytical Letters, 45(17), 2589-2602. https://doi.org/10.1080/00032719.2012.698672

- Grewal, M. K., Chandrapala, J., Donkor, O., Apostolopoulos, V., Stojanovska, L., & Vasiljevic, T. (2017). Fourier transform infrared spectroscopy analysis of physicochemical changes in UHT milk during accelerated storage. *International Dairy Journal*, 66, 99–107. https://doi.org/10.1016/j.idairyj.2016.11.014
- He, H., Sun, D.-W., Pu, H., Chen, L., & Lin, L. (2019). Applications of Raman spectroscopic techniques for quality and safety evaluation of milk: A review of recent developments. *Critical Reviews in Food Science and Nutrition*, 59(5), 770–793. https://doi.org/10.1080/10408398.2018.1528436
- Júnior, P. H. R., de Sá Oliveira, K., de Almeida, C. E. R., De Oliveira, L. F. C., Stephani, R., da Silva Pinto, M., de Carvalho, A. F., & Perrone, Í. T. (2016). FT-Raman and chemometric tools for rapid determination of quality parameters in milk powder: Classification of samples for the presence of lactose and fraud detection by addition of maltodextrin. *Food Chemistry*, *196*, 584–588. https://doi.org/10.1016/j.foodchem.2015.09.055
- Khan, H.H., McCarthy, U., Esmonde-White, K., Casey, I., O'Shea, N. (2023). Potential of Raman spectroscopy for in-line measurement of raw milk composition. *Food Control*, *152*, 109862. https://doi.org/10.1016/j.foodcont.2023.109862
- Kostovska, R., Cruz, J., Drouin, G., Horan, B., Tobin, J. T., O'Callaghan, T. F., Hettinga, K., Kelly, A. L., Gómez-Mascaraque, L. G. (2025). Use of Raman spectroscopy as a rapid tool to discriminate milk deriving from different pasture-based diets and breeds in a seasonal, spring-calving dairy production system. *Journal of Dairy Science*, *108*(9), 9205–9221. https://doi.org/10.3168/jds.2025–26489
- Li, M., Chen, J., Xu, J., Fu, S., & Gong, H. (2015). Determination of lactose in milk by Raman spectroscopy. *Analytical Letters*, *48*(8), 1333–1340. https://doi.org/10.1080/00032719.2014.979358
- Markoska, T., Huppertz, T., M. K., & Vasiljevic, T. (2019). Structural changes of milk proteins during heating of concentrated skim milk determined using FTIR. *International Dairy Journal*, 89, 21–30. https://doi.org/10.1016/j.idairyj.2018.08.001
- McGoverin, C. M., Clark, A. S. S., Holroyd, S. E., & Gordon, K. C. (2010). Raman spectroscopic quantification of milk powder constituents. *Analytica Chimica Acta*, 673(1), 26–32. https://doi.org/10.1016/j.aca.2010.05.014
- Mohammadi, S., Gowen, A., Luo, J., & O'Donnell, C. (2024). Prediction of milk composition using multivariate chemometric modelling of infrared, Raman and fluorescence spectroscopic data: A review. *Food Control*, *165*, 110658. https://doi.org/10.1016/j.foodcont.2024.110658
- Moros, J., Garrigues, S., & de la Guardia, M. (2007). Evaluation of nutritional parameters in infant formulas and powdered milk by Raman spectroscopy. *Analytica Chimica Acta*, *593*(1), 30–38. https://doi.org/10.1016/j. aca.2007.04.036
- Murphy, B. M., D'Antonio, J., Manning, M. C., & Al-Azzam, W. (2014). Use of the amide II infrared band of proteins for secondary structure determination and comparability of higher order structure. *Curr Pharm Biotechnol*, 15(9), 880–9. https://doi.org/10.2174/1389201015666141012181609.
- Ní Fhuaráin, A. M., O'Donnell, C. P., Luo, J., & Gowen, A. A. (2024). A review on MIR, NIR, fluorescence and raman spectroscopy combined with chemometric modeling to predict the finctional properties of raw bovine milk. *ACS Food Science & Technology*, 4(10), 2258–2271. https://doi.org/10.1021/acsfoodscitech.3c00510
- Petrov, A. N., Galstyan, A. G., Radaeva, I. A., Turovskaya, S. N., Illarionova, E. E., Semipyatnyi, V. K., Khurshudyan, S. A., Dubuske, L. M., & Krikunova, L. N. (2017). Indicators of quality of canned milk: russian and international priorities. *Foods and Raw Materials*, *5*(2), 151–161. https://doi.org/10.21603/2308–4057-2017–2-151–161
- Rachah, A., Reksen, O., Tafintseva, V., Stehr, F. J. M., Rukke, E. O., Prestløkken, E., Martin, A., Kohler, A., & Afseth, N. K. (2021). Exploring dry-film FTIR spectroscopy to characterize milk composition and subclinical ketosis throughout a cow's lactation. *Foods*, *10*(9), 2033. https://doi.org/10.3390/foods10092033
- Reiner, J., Protte, K., & Hinrichs, J. (2020). Investigation of the applicability of Raman spectroscopy as online process control during consumer milk production. *ChemEngineering*, 4(3), 45. https://doi.org/10.3390/chemengineering4030045
- Ribeiro, D. C. S. Z., Neto, H. A., Lima, J. S., de Assis, D.C.S., Keller, K.M., Campos, S.V.A., Oliveira, D.A., & Fonseca, L.M. (2023). Determination of the lactose content in low-lactose milk using FTIR and CNN. *Heliyon*, *9*(1), e12898. https://doi.org/10.1016/j.heliyon.2023.e12898

- Schott, J. A., Do-Thanh, C.L., Shan, W., Puskar, N.G., Dai, S., & Mahurin, S.M. (2021). FTIR investigation of CO₂ sorption in porous ionic liquids. Green Chemical Engineering, 2(4), 392-401. https://doi.org/10.1016/j.gce.2021.10.002
- Silva, M.G., de Paula, I.L., Stephani, R., Edwards, H.G., & de Oliveira, L.F.C. (2021). Raman spectroscopy in the quality analysis of dairy products: A literature review. Journal of Raman Spectroscopy, 52(12), 2444–2478. https://doi. org/10.1002/jrs.6214
- Smith, G. P. S., Gordon, K. C., & Holroyd, S. E. (2013). Raman spectroscopic quantification of calcium carbonate in spiked milk powder samples. Vibrational Spectroscopy, 67, 87–91. https://doi.org/10.1016/j.vibspec.2013.04.005
- Stani, C., Vaccari, L., Mitri, E., & Birarda, G. (2020). FTIR investigation of the secondary structure of type I collagen: New insight into the amide III band. Spectrochimica Acta Part A, 229, 118006. https://doi.org/10.1016/j.saa.2019.117653
- Suha Elderderi, Leman-Loubière, C., Wils, L., Henry, S., Bertrand, D., Byrne, H. J., Igor Chourpa, Cécile Enguehard-Gueiffier, Munnier, E., Elbashir, A. A., Boudesocque-Delaye, L., & Bonnier, F. (2020). ATR-IR spectroscopy for rapid quantification of water content in deep eutectic solvents. Journal of Molecular Liquids, 311, 113361–113361. https://doi.org/10.1016/j.mollig.2020.113361
- Yan, H., Yu, Z., & Liu, L. (2022). Lactose crystallization and Maillard reaction in simulated milk powder based on the change in water activity. Journal of Food Science, 87(11), 4956-4966. https://doi.org/10.1111/1750-3841.16267
- Zhang, Z.Y. (2020). The statistical fusion identification of dairy products based on extracted Raman spectroscopy. RSC Advances, 10(50), 29682–29687. https://doi.org/10.1039/D0RA06318E
- Zhang, Y., Shen, B., Wang, H., & Zhao, Y. (2025). Quantification of cow milk in adulterated goat milk using Raman spectroscopy and machine learning. Microchemical Journal, 215, 114319. https://doi.org/10.1016/j. microc.2025.114319
- Zhang, Z.-Y., Su, J.-S., & Xiong, H.-M. (2025). Technology for the quantitative identification of dairy products based on raman spectroscopy, chemometrics, and machine learning. Molecules, 30(2), 239. https://doi.org/10.3390/ molecules30020239

ОБ АВТОРАХ

- Барковская Ирина Александровна, младший научный сотрудник лаборатории технологий биотрансформации и консервирования Федерального государственного автономного научного учреждения «Всероссийский научно-исследовательский институт молочной промышленности» (115093, Российская Федерация, Москва, ул. Люсиновская, д. 35, корп. 7), ORCID: https://orcid.org/0000-0003-4779-1076, Scopus ID: 58202228700, Researcher ID: ITR-9834–2023, SPIN-код: 9404–4365, i_barkovskaya@vnimi.org
- Туровская Светлана Николаевна, старший научный сотрудник лаборатории технологий биотрансформации и консервирования Федерального государственного автономного научного учреждения «Всероссийский научно-исследовательский институт молочной промышленности» (115093, Российская Федерация, Москва, ул. Люсиновская, д. 35, корп. 7), ORCID: https://orcid.org/0000-0002-5875-9875, Scopus ID: 57200378711, Researcher ID: K-1997–2018, SPIN-код: 6904–5308, s turovskaya@vnimi.org
- Илларионова Елена Евгеньевна, научный сотрудник лаборатории технологий биотрансформации и консервирования Федерального государственного автономного научного учреждения «Всероссийский научно-исследовательский институт молочной промышленности» (115093, Российская Федерация, Москва, ул. Люсиновская, д. 35, корп. 7), ORCID: https://orcid.org/0000-0002-9390-0984, Scopus ID: 57208421852, Researcher ID: G-7862–2019, SPIN-код: 2990–2390, e_illarionova@vnimi.org
- Ярышев Владислав Юрьевич, младший научный сотрудник лаборатории технологий биотрансформации и консервирования Федерального государственного автономного научного учреждения «Всероссийский научно-исследовательский институт молочной промышленности» (115093, Россия, Москва, ул. Люсиновская, д. 35, корп. 7), ORCID: https://orcid.org/00009-0007-7848-4606, SPIN-код: 4906-1980, v_yaryshev@vnimi.org

- Блиадзе Владимир Геннадьевич, младший научный сотрудник лаборатории технологий биотрансформации и консервирования Федерального государственного автономного научного учреждения «Всероссийский научно-исследовательский институт молочной промышленности» (115093, Российская Федерация, Москва, ул. Люсиновская, д. 35, корп. 7), ORCID: https://orcid.org/0000-0001-9300-3267, Scopus ID: 6504011266, SPIN-код: 7263-6500, v bliadze@vnimi.org
- Кондратенко Владимир Владимирович, доктор технических наук, заведующий лабораторией технологий биотрансформации и консервирования Федерального государственного автономного научного учреждения «Всероссийский научно-исследовательский институт молочной промышленности» (115093, Российская Федерация, Москва, ул. Люсиновская, д. 35, корп. 7), ORCID: https://orcid.org/0000-0002-0913-5644, Scopus ID: 57111785100, SPIN-код: 3383–1774, v_kondratenko@vnimi.org

ABOUT THE AUTHORS

- Barkovskaya Irina Alexsandrovna, Junior Researcher of the Laboratory of Biotransformation and Preservation Technologies, All-Russian Dairy Research Institute (115093, Russian Federation, Moscow, Lyusinovskaya Str., 35, blok 7), ORCID: https://orcid.org/0000-0003-4779-1076, Scopus ID: 58202228700, Researcher ID: ITR-9834–2023, SPIN-code: 9404–4365, i_barkovskaya@vnimi.org
- Turovskaya Svetlana Nikolaevna, Senior Researcher of the Laboratory of Biotransformation and Preservation Technologies, All-Russian Dairy Research Institute (115093, Russian Federation, Moscow, Lyusinovskaya Str., 35, blok 7), ORCID: https://orcid.org/0000-0002-5875-9875, Scopus ID: 57200378711, Researcher ID: K-1997-2018, SPIN-code: 6904–5308, s_turovskaya@vnimi.org
- Illarionova Elena Evgenevna, Researcher of the Laboratory of Biotransformation and Preservation Technologies, All-Russian Dairy Research Institute (115093, Russian Federation, Moscow, Lyusinovskaya Str., 35, blok 7), ORCID: https://orcid.org/0000-0002-9390-0984, Scopus ID: 57208421852, Researcher ID: G-7862-2019, SPIN-code: 2990–2390, e_illarionova@vnimi.org.
- Yaryshev Vladislav Yuryevich, Junior Researcher of the Laboratory of Biotransformation and Preservation Technologies, All-Russian Dairy Research Institute (115093, Russian Federation, Moscow, Lyusinovskaya Str., 35, blok 7), ORCID: https://orcid.org/00009-0007-7848-4606, SPIN-code: 4906-1980, v_yaryshev@vnimi.org
- Bliadze Vladimir Gennadevich, Junior Researcher of the Laboratory of Biotransformation and Preservation Technologies, All-Russian Dairy Research Institute (115093, Russian Federation, Moscow, Lyusinovskaya Str., 35, blok 7), ORCID: https://orcid.org/0000-0001-9300-3267, Scopus ID: 6504011266, SPIN-code: 7263-6500, v_bliadze@vnimi.org
- Kondratenko Vladimir Vladimirovich, Dr. Sci. (Eng.), Head of the laboratory of Biotransformation and Preservation Technologies, All-Russian Dairy Research Institute (115093, Russian Federation, Moscow, Lyusinovskaya Str., 35, blok 7), ORCID: https://orcid.org/0000-0002-0913-5644, Scopus ID: 57111785100, SPIN-code: 3383-1774, v_kondratenko@vnimi.org