https://doi.org/10.37442/fme.2025.2.84

Безглютеновые хлебобулочные изделия из пророщенного амаранта: применение экстракта виноградной косточки и частичной дегидратации в функциональной рецептуре

Н.А. Есаулко, М.В. Селиванова, Д.С. Соломатин, Е.С. Романенко, Е.А. Миронова, М.С. Новак

Ставропольский государственный аграрный университет, г. Ставрополь, Российская Федерация

Корреспонденция:

Есаулко Наталия Александровна

E-mail: esaulko70@mail.ru

Конфликт интересов:

авторы сообщают об отсутствии конфликта интересов.

Поступила: 20.01.2025 Принята: 15.06.2025

Опубликована: 30.06.2025

Финансирование:

Фонд содействия инновациям

Copyright: © 2025 Авторы

РИЗИВНИЕ

Введение: Рост числа пациентов с целиакией и распространение тенденций здорового питания формируют устойчивый спрос на безглютеновую продукцию. В условиях импортозамещения особую актуальность приобретает разработка хлебобулочных изделий на основе локального растительного сырья. Амарант (Amaranthus cruentus L.) обладает высоким содержанием белка, сквалена и биологически активных веществ, но его применение осложняется отсутствием клейковины. Совмещение амаранта с экстрактом виноградной косточки (Vitis vinifera) и технологией частичной дегидратации позволяет компенсировать структурные недостатки и повысить функциональную ценность продукции.

Цель: Разработка и экспериментальная проверка технологии безглютеновых хлебобулочных изделий на основе пророщенного амаранта с применением экстракта виноградной косточки и частичной дегидратации, направленной на повышение пищевой ценности, улучшение текстурных характеристик и увеличение доступности профилактической продукции для лиц с целиакией и потребителей функционального питания.

Материалы и методы: В исследовании использовались семена амаранта сорта «Каракула» (урожай 2023 г.), экстракт виноградной косточки (серия GSE 95 %), вспомогательные ингредиенты (гречневая и рисовая мука, яблоко), а также очищенная вода. Органолептический анализ проводился согласно ГОСТ 5667-2022 с привлечением дегустационной комиссии. Физико-химические показатели (влажность, кислотность, пористость, содержание глютена) определялись по ГОСТ 34835-2022.

Результаты: Разработанная рецептура продемонстрировала высокую пористость (72%), сбалансированную кислотность (2,8°), оптимальную влажность (47,2 %) и отсутствие глютена (<1 мг/кг), что подтверждает пригодность продукции для диеты при целиакии. Технология обеспечивает сохранность биоактивных компонентов, улучшает структурные характеристики изделий и увеличивает срок хранения. Экономическая эффективность достигается за счёт локального сырья и энергощадящего режима дегидратации.

Выводы: Предложенная технология представляет собой эффективное решение задач безглютенового хлебопечения, обеспечивая улучшенные органолептические и физикохимические свойства, высокую пищевую ценность и доступность продукта. Дальнейшие исследования предполагают масштабирование технологии, расширение ассортимента и клиническую валидацию нутрицевтического эффекта.

Ключевые слова: безглютеновые хлебобулочные изделия; амарантовая мука; целиакия; экстракт виноградной косточки; частичная дегидратация; функциональное питание; пророщенные зерновые культуры; антиоксидантные добавки в хлебопечении; растительное сырьё в хлебопечении

Для цитирования: Есаулко, Н.А., Селиванова, М.В., Соломатин, Д.С., Романенко, Е.С., Миронова, Е.А., & Новак, М.С. (2025). Безглютеновые хлебобулочные изделия из пророщенного амаранта: применение экстракта виноградной косточки и частичной дегидратации в функциональной рецептуре. FOOD METAENGINEERING, 3(2), 11–26. https://doi.org/10.37442/fme.2025.2.84

https://doi.org/10.37442/fme.2025.2.84

Gluten-free baked goods made from sprouted amaranth: the use of grape seed extract and partial dehydration in a functional recipe

Natalia A. Esaulko, Maria V. Selivanova, Danil S. Solomatin, Elena S. Romanenko, Elena A. Mironova, Maria S. Novak

Stavropol State Agrarian University, Stavropol, Russian Federation

ABSTRACT

Background: The growing prevalence of celiac disease and the global shift toward health-conscious eating are driving sustained demand for gluten-free baked goods. In the context of import substitution, the development of bakery products based on locally sourced plant materials is gaining particular relevance. *Amaranthus cruentus L*. is rich in protein, squalene, and biologically active compounds, yet its use is limited by the absence of gluten. Combining amaranth with *Vitis vinifera* seed extract and partial dehydration technology helps compensate for structural deficiencies and enhances the functional value of the final product.

Purpose: To develop and experimentally validate a gluten-free bakery technology based on germinated amaranth, incorporating grape seed extract and partial dehydration, aimed at improving nutritional value, enhancing textural properties, and increasing accessibility of preventive nutrition for individuals with celiac disease and consumers of functional foods.

Materials and Methods: The study employed Amaranthus cruentus seeds ('Karakula' cultivar, 2023 harvest), grape seed extract (GSE 95% series), supporting ingredients (buckwheat and brown rice flour, apple), and purified water. Sensory evaluation was conducted according to GOST 5667-2022 using a tasting panel. Physicochemical parameters (moisture content, acidity, porosity, and gluten content) were determined according to GOST 34835-2022.

Results: The developed formulation demonstrated high porosity (72%), balanced acidity (2.8°), optimal moisture content (47.2%), and complete gluten absence (<1 mg/kg), confirming the product's suitability for gluten-free diets. The proposed technology preserves bioactive components, improves structural properties, and extends shelf life. Economic feasibility is achieved through the use of local raw materials and energy-efficient dehydration processes.

Conclusion: The proposed technology offers an effective solution to the challenges of gluten-free baking by delivering improved sensory and physicochemical characteristics, high nutritional value, and enhanced product accessibility. Further research will focus on scaling production, diversifying product lines, and clinically validating the nutraceutical effect.

Keywords: gluten-free baked goods; amaranth flour; celiac disease; grape seed extract; partial dehydration; functional nutrition; germinated grains; antioxidant additives in baking; plant-based baking ingredients

Correspondence:

Natalia A. Esaulko

F-mail: esaulko70@mail.ru

Conflict of interest:

The authors report the absence of a conflict of interest.

Received: 20.01.2025 **Accepted:** 15.06.2025 **Published:** 30.06.2025

Funding:

Innovation Promotion Fund.

Copyright: © 2025 The Authors

To cite: Esaulko, N.A., Selivanova, M.V., Solomatin, D.S., Romanenko, E.S., Mironova, E.A., & Novak, M.S. (2025). Gluten-free baked goods made from sprouted amaranth: The use of grape seed extract and partial dehydration in a functional recipe. *FOOD METAENGINEERING*, *3*(2), 11–26. https://doi.org/10.37442/fme.2025.2.84

ВВЕДЕНИЕ

Несмотря на устойчивый рост глобального и российского рынка безглютеновой продукции, качество и доступность этих изделий остаются предметом научной и практической обеспокоенности, особенно в регионах с ограниченными логистическими и производственными ресурсами (Щербакова & Кузнецова, 2022). Проблема обостряется на фоне увеличения числа пациентов с целиакией — хроническим аутоиммунным заболеванием, полностью исключающим употребление глютена (Тлиф и соавт., 2012). Согласно данным Lohi et al. (2007), распространенность целиакии в Европе и России составляет в среднем 1-2%, а генетическую предрасположенность имеют до 15% населения (Savvateeva, 2017; Попов и соавт., 2024). В последнее время амарант стал объектом растущего научного и промышленного интереса. Это связано с его ценными биологическими свойствами, богатым фитохимическим составом и широкой фармакологической активностью (Бараняк & Добровольска, 2022). Хотя производство амаранта официально не регистрируется Организацией ООН по продовольствию и сельскому хозяйству (ФАО), основными производителями являются несколько стран Южной Америки, а также Китай, Индия, Россия и Кения (Aderibigbe et al., 2022). В ряде регионов России, включая Ставропольский край, наблюдается устойчивый рост заболеваемости среди детского населения (Черкасова, 2024), что требует расширения ассортимента доступной и безопасной безглютеновой продукции, в том числе профилактического назначения.

В этом контексте повышенный научный интерес вызывает амарант (Amaranthus spp.) — зерновая культура, не содержащая глютена, обладающая высокой пищевой ценностью и богатая биологически активными веществами, включая сквален, лизин и пищевые волокна (Zannini et al., 2022; Meena et al., 2022). Благодаря множеству агрономических и питательных свойств амарант в последнее время набирает популярность (Oprea et al., 2022). Поскольку известно, что это засухоустойчивая культура, она может расти в различных климатических и экологических условиях. По сравнению с другими основными зерновыми культурами, такими как кукуруза, пшеница и сорго, амарант содержит больше белка (14,0-15,5%), меньше жира (7,5%), больше углеводов (60-68%) и меньше золы (2,5–3,1%) (Aderibigbe et al., 2022). Применение амарантовой муки позволяет существенно увеличить содержание белка и микронутриентов в хлебобулочных

изделиях, однако технологические свойства этой культуры ограничены отсутствием клейковины, что ведет к сниженной эластичности теста и ухудшенной структуре мякиша (Yano, 2020; Peñalver et al., 2024).

Среди возможных решений этой проблемы — использование растительных экстрактов с функциональной активностью, в частности экстракта виноградной косточки (Vitis vinifera), богатого проантоцианидинами и способного улучшать структурные и реологические характеристики теста за счёт взаимодействия полифенолов с белками и крахмалами (Schoenlechner et al., 2010; Быкова и соавт., 2018). Дополнительным технологическим приёмом, способствующим сохранению биоактивных веществ и улучшению технологических свойств сырья, может выступать частичная дегидратация при щадящих температурных режимах (Волкова, 2023).

Несмотря на наличие отдельных исследований, посвящённых амаранту, экстрактам виноградной косточки и технологиям сушки, до настоящего времени не представлено комплексных решений, интегрирующих указанные компоненты в единую технологическую платформу, ориентированную на производство безглютеновой продукции с повышенной пищевой ценностью и адаптивной структурой. Мука из амаранта и экстракт виноградной косточки — успешные кандидаты для улучшения качества безглютеновых изделий (Yalcin et al., 2022). Результаты этого исследования дают полезную информацию и могут способствовать разработке новых безглютеновых хлебобулочных продуктов.

Целью настоящего исследования является разработка рецептуры безглютеновых хлебобулочных изделий профилактической направленности на основе пророщенного амаранта, с применением экстракта виноградной косточки и частичной дегидратации с хорошими органолептическими и физико-химическими характеристиками полученной продукции. Поскольку число людей с целиакией растёт, такие высококачественные продукты становятся всё более востребованными.

ЛИТЕРАТУРНЫЙ ОБЗОР

Биологические и технологические свойства амаранта

Амарант (Amaranthus spp.) представляет собой ценное безглютеновое сырье, обладающее высоким содержанием полноценного белка (до 18%) и уникальным

аминокислотным составом с высоким уровнем лизина (до 6%) (Никитин, 2005; Zannini et al., 2022). Кроме того, в составе семян амаранта обнаружены биологически активные соединения, включая сквален, витамины группы В, пищевые волокна и минералы (Тохтиева, 2022). Сквален, как липофильный антиоксидант, участвует в защите клеточных мембран и регулирует липидный обмен, что повышает нутрицевтическую значимость продукции. Семена амаранта обладают очень высокой питательной ценностью. Наиболее важным продуктом из амаранта является зерно, которое используется в качестве муки в хлебопекарной промышленности. Амарантовая мука идеально подходит для приготовления питательных продуктов (безглютеновых) для тех, кто чувствителен к глютену, благодаря отсутствию в ней глютена. Благодаря высокому содержанию белка амарант можно использовать отдельно или в качестве пищевой добавки в смесях на основе злаков (Alvarez-Jubete et al., 2010; Ahmed et al. 2022).

Зёрна амаранта — это псевдозлаки, не содержащие глютен, которые набирают популярность благодаря высокому содержанию жизненно важных питательных веществ и биологически активных компонентов, потенциальной пользе для здоровья, устойчивости к неблагоприятным климатическим и почвенным условиям, минимальным требованиям к сельскохозяйственным ресурсам, возможности получения дохода для мелких фермеров, а также различным сферам применения в рамках устойчивой цепочки создания стоимости. Однако из-за недостаточной осведомлённости потребителей, исследователей и политиков об этих потенциальных преимуществах зёрен амаранта они остаются невостребованными (Kaur et al., 2024). Поскольку число людей с целиакией растёт, такие высококачественные продукты становятся всё более востребованными.

Хлопья, мука, каша и масло — наиболее распространённые продукты, получаемые из семян амаранта. Благодаря высокому содержанию белка амарант можно использовать отдельно или в качестве добавки к злаковым смесям (Balakrishnan & Schneider, 2022). Амарант уже используется в качестве новой эффективной альтернативы при производстве функционального печенья. Метод заключается в частичной замене цельнозерновой муки на муку из амаранта (Siddiqui et al., 2022). Глютен, белковая фракция, получаемая из пшеницы, ржи, ячменя, овса, их гибридов и производных, очень важен в технологии выпечки. Число людей, страдающих непереносимостью глютена, растёт во всём мире, и в то же время увеличивается потребность в продуктах, подходящих для безглютеновой диеты. Хлеб и хлебобулочные изделия являются неотъемлемой частью ежедневного рациона. Поэтому ведутся поиски новых натуральных безглютеновых ингредиентов для выпечки и новых способов обработки традиционных ингредиентов (Šmídová & Rysová, 2022; Иванова, 2025).

Тем не менее, технологические свойства амаранта ограничены отсутствием глютена. Безглютеновое тесто из амарантовой муки характеризуется слабой газоудерживающей способностью, высокой плотностью и низкой эластичностью, что затрудняет формирование изделий с традиционными потребительскими характеристиками (Yano, 2020). Проблема может быть частично решена путем ферментации или введения функциональных добавок.

Применение экстракта виноградной косточки

Экстракт виноградной косточки (Vitis vinifera) богат полифенолами, включая проантоцианидины, флавоноиды и витамин Е, которые обладают высокой антиоксидантной активностью (Федянина и соавт., 2017). Эти компоненты способны взаимодействовать с белками и крахмалом в тесте, улучшая его структуру, повышая водоудерживающую способность и стабилизируя мякиш. Исследования показали, что косточки винограда обладают широким спектром фармакологических свойств против окислительного стресса. Их потенциальная польза включает защиту от окислительного повреждения, антидиабетические, антихолестериновые, антитромбоцитарные и антимикробные функции. Признание таких преимуществ проантоцианидинов для здоровья привело к использованию виноградных косточек и продуктов их переработки в качестве пищевой добавки для различных групп потребителей (Морозова, 2021, Пономарев с соавт., 2024). Виноградные косточки, отходы винодельческой промышленности и производства виноградного сока, содержат большое количество фенольных соединений и, как было подтверждено в ряде исследований, чрезмерно полезны для здоровья. Из общего количества фенольных соединений в винограде 10% или менее содержится в мякоти, 30% — в кожице винограда, а оставшиеся 60% — в косточках. Поскольку виноградные косточки содержат большое количество фенольных соединений,

в последние годы широкое распространение получило использование виноградных продуктов в форме капсул в качестве пищевых добавок. Кроме того, антиоксиданты растительного происхождения способствуют увеличению срока хранения продукции и обеспечивают профилактический эффект, особенно в составе диетических хлебобулочных изделий (Eduardo et al., 2024). В процессе ферментации тесто становится более упорядоченным, в то время как в белом хлебе во время ферментации существенных изменений не наблюдается (Растительные экстракты также положительно влияют на ферментацию теста, как показано в исследовании, где экстракт виноградной косточки усилил прорастание зерна и ферментативную активность (Yalcin et al., 2022, Пономарев и соавт., 2024).

Методы дегидратации и их влияние на биодоступность нутриентов

Частичная дегидратация при пониженных температурах (60-65 °C) позволяет сохранить термолабильные биологически активные вещества, включая витамины, полифенолы и сквален, что подтверждено исследованиями. Низкотемпературная сушка также способствует улучшению технологических свойств зерна, включая его растворимость и водопоглощаемость, что важно для производства функциональных смесей (Коваленко, 2022; Петрова, 2023). К преимуществам низкотемпературной сушки зерна обезвоженным воздухом, помимо отказа от дефицитных видов топлива, относятся: более полное сохранение качества высушиваемого зерна, повышение взрыво- и пожаробезопасности сушильной установки, снижение удельных энергозатрат на сушку, возможность использования существующих шахтных сушилок. Для этого в сушильную камеру в качестве сушильного агента достаточно подавать обезвоженный воздух (Соболева, 2009). Применение дегидратации в производстве безглютеновой продукции может стать эффективной альтернативой традиционным способам термической обработки, которая снижает биодоступность нутриентов (Schoenlechner et al., 2010).

Современные технологии в производстве безглютеновой выпечки

В настоящее время всё более востребованным становится производство продуктов здорового и функционального питания, в том числе безглютеновых хлебобулочных продуктов, востребованность которых обусловлена повышенной заинтересованностью населения к собственному здоровью, в частности ростом выявленных случаев глютенассоциированных заболеваний. Вместе с тем представленные на рынке безглютеновые хлебобулочные изделия имеют явные отклонения по пищевой полноценности, обусловленные низкой массовой долей по содержанию белка, что ставит под сомнение их альтернативность для замены традиционных видов продукции (Рыжакова, & Головизнина, 2019; Пищиков & Лазарев, 2024). В последние годы все более актуальным становится производство пищевых продуктов для здорового и функционального питания, которые способны являться источниками всех необходимых организму макро- и микронутриентов (Ruiz-Aceituno et al., 2024).

Производство и потребление такой продукции становится всё более востребованным и подкреплено правовыми основами со стороны государства, включая большие вызовы научно-технологического развития РФ. В Стратегии повышения качества пищевой продукции в Российской Федерации до 2030 года формулируются различные направления развития с целью выпуска пищевой продукции, отвечающей принципам здорового питания¹. Закваски из киноа и амаранта больше всего похожи на традиционные (пшеничные): более высокое содержание молочной кислоты, более высокая антимикробная активность, более высокое общее содержание фенолов, более высокая антиоксидантная способность и более богатый бактериальный и грибковый состав (Федянина и соавт., 2017). Таким образом, они являются хорошей альтернативой для использования в качестве заменителя химических дрожжей в качестве добавки при производстве экологически чистого хлеба без глютена, поскольку их длительный процесс ферментации оказывает благотворное воздействие на здоровье, главным образом благодаря бактериальному составу, в котором преобладают бактерии рода Lactobacillus, бактерии, которые, согласно результатам исследования

Стратегия повышения качества пищевой продукции в Российской Федерации до 2030 года: Распоряжение Правительства РФ: утверждена распоряжением Правительства РФ 29 июня 2016 г.

наилучшим образом адаптированы к 25 °C, поэтому лучше всего хранить закваски при комнатной температуре (Peñalver et al., 2024).

Актуальность производства хлебобулочных изделий специализированной направленности из нетрадиционных видов муки обусловлена такими основными направлениями, как питание людей с глютен-ассоциированными заболеваниями, среди которых не только целиакия, но и другие формы непереносимости глютена, а также людей, соблюдающих принципы здорового питания; расширение ассортимента, увеличение объема продаж за счет привлечения потребителя новыми, уникальными свойствами продукции; повышение пищевой ценности хлебобулочных изделий за счёт высокого содержания в такой муке витаминов, минеральных веществ, пищевых волокон и незаменимых аминокислот (Monteiro et al., 2023). Amaranthus spp. был предметом многочисленных обзоров, которые были написаны и опубликованы; эти исследования охватывают широкий спектр тем, включая производство, состав, применение и последствия для здоровья (Aderibigbe et al., 2022; Graziano et al., 2022).

Современные подходы к разработке безглютеновой хлебобулочной продукции включают использование ферментированных заквасок, пророщенных зерен и функциональных добавок (Rodríguez et al., 2023, Лапин & Соколова, 2024). Пророщенное зерно активирует амилолитические и протеолитические ферменты, что улучшает реологические свойства теста и способствует более равномерному развитию мякиша (Rodríguez et al., 2023; Лапин & Соколова, 2024). Ферментация и проращивание способствуют накоплению биологически активных веществ, что повышает нутритивную плотность продукта и делает его привлекательным для профилактического питания.

Несмотря на накопленные данные о пищевой ценности амаранта, эффективности экстракта виноградной косточки и преимуществах низкотемпературной дегидратации, в существующих исследованиях отсутствуют комплексные технологические решения, объединяющие эти компоненты в единую рецептуру. На сегодняшний день не представлено рецептур, которые бы одновременно обеспечивали: стабильную структуру безглютенового теста, сохранность нутриентов без интенсивной термообработки, низкую себестоимость за счёт локального сырья. Данная проблема особенно актуальна в контексте роста потребности

в профилактической продукции для детей с целиакией (Попов и соавт., 2024). Предлагаемая в настоящем исследовании технология, основанная на использовании пророщенного амаранта, экстракта виноградной косточки и частичной дегидратации, может восполнить этот пробел и стать основой для дальнейших прикладных и клинических разработок.

МАТЕРИАЛЫ И МЕТОДЫ

Дизайн исследования

Исследование носило экспериментальный характер и было направлено на разработку и оценку технологии производства безглютеновых хлебобулочных изделий из амаранта с применением экстракта виноградной косточки и частичной дегидратации. Основной задачей являлось сопоставление органолептических и физико-химических характеристик разработанного продукта с нормативными значениями и характеристиками существующих образцов безглютеновой продукции.

Исследование включало следующие этапы:

- 1. Подготовка и предварительная обработка сырья;
- 2. Частичная дегидратация амаранта (подцикл 1);
- 3. Проращивание амаранта в водном экстракте виноградной косточки (подцикл 2);
- 4. Приготовление закваски спонтанного брожения;
- 5. Ведение технологического процесса выпечки;
- 6. Оценка качества готового продукта.

Каждый этап выполнялся в трех повторностях. В качестве контрольного использовался образец безглютенового хлеба на основе классической смеси из рисовой и кукурузной муки.

Объекты исследования

В качестве объектов исследования использовались семена амаранта сорта «Каракула», выращенные в Ставропольском крае (урожай 2023 года); водный экстракт виноградной косточки серии GSE 95 % производства ООО «Фитотех» (Россия); гречневая и рисовая мука из бурого риса пищевого класса согласно ГОСТ Р 54683; очищенная вода в соответствии с ГОСТ 6709–72; а также свежее яблоко сорта «Антоновка».

Подготовка и обработка сырья

Семена амаранта проходили две стадии очистки:

- (1) первая стадия механическое удаление крупного мусора с помощью семоочистительной машины OBC-25;
- (2) вторая стадия фотосепарация на промышленном фотосепараторе согласно ГОСТ 27186 для удаления чёрных и посторонних примесей.

Очищенные семена промывали в течение 1-2 минут и делили на две части в соответствии с исследовательскими подциклами.

Подцикл 1: Частичная дегидратация

Семена замачивали в дистиллированной воде (t = 25 °C) при соотношении 1:1 (масса:объём) в течение 5-7 часов. После замачивания образовавшийся осадок удаляли, и семена подвергали сушке в конвекционном шкафу при температуре 60-65 °C в течение 30-55 минут до достижения влажности 9%. Высушенное сырьё перемалывали в муку на лабораторной мельнице (производительность — 150 г/мин).

Подцикл 2: Проращивание в экстракте виноградной косточки

Семена замачивали в экстракте виноградной косточки (1:10 по массе) при температуре 23-28 °С и соотношении твёрдой и жидкой фазы 1:0,6 в течение 25-30 часов. Ростки амаранта использовали после достижения длины 3-7 мкм.

Полное набухание определяли по прекращению увеличения объёма и приобретению упругости. Ростки хранили в гастроемкостях при -25 °C до использования в производстве (не более 7 суток).

Приготовление закваски

Закваска спонтанного брожения готовилась в течение 8 суток путём ежедневного пополнения смеси. Исходная формула включала:

- 1. пророщенный амарант 60 г,
- 2. вода 120 мл,
- 3. гречневая мука 25 г,
- 4. мука из бурого риса 20 г,
- 5. тёртое яблоко с кожурой 15 г.

Ферментация проходила при температуре 20-25 °C в условиях защиты от света и сквозняков. На 8-й день закваску использовали в выпечке, хранили при −25 °C не более 30 суток.

Технология выпечки

Выпечка производилась по следующей рецептуре (в пересчёте на 100 кг закваски) (Таблица 1).

Таблица 1

Массовая доля компонентов для приготовления безглютенового хлебобулочного изделия

Table 1

Mass Fractions of Components for Preparing a Gluten-Free **Bakery Product**

Компонент	Массовая доля, %		
Вода	48,0		
Гречневая мука	10,5		
Мука из бурого риса	14,0		
Пророщенный амарант	25,0		
Яблоко тёртое	2,5		

Тесто замешивали в лабораторной тестомесильной машине, расстаивали в течение 45 минут при температуре 32 °C и относительной влажности 75 %, затем выпекали при 180 °C в течение 40 минут.

Методы оценки качества продукции

Органолептический анализ

Оценка проводилась по ГОСТ 5667-2022, включала характеристики: внешний вид, форма, пористость, эластичность мякиша, вкус, аромат, наличие посторонних привкусов и запахов. Участвовали 10 дегустаторов (эксперты по пищевым продуктам), использовалась 5-балльная шкала.

Физико-химический анализ

Параметры измерялись в трёх повторностях, данные усреднялись. Применялись следующие методы:

- 1. влажность по ГОСТ 21094-75;
- 2. пористость по ГОСТ 5669-96;
- 3. кислотность по ГОСТ 5670-96;
- 4. содержание глютена иммуноферментные тест-системы типа RIDASCREEN Gliadin;
- 5. выход готового продукта по массе после выпечки.

Обработка данных

Расчеты выполняли с помощью программы MS Excel. Анализы проводили в трех повторностях, относительная погрешность измерений не превышала 3 % при доверительной вероятности Р = 0,95. Результаты измерений представлены как средние арифметические.

РЕЗУЛЬТАТЫ

В данном разделе представлены эмпирические данные, полученные в ходе разработки и апробации технологии производства безглютеновых хлебобулочных изделий на основе амаранта с использованием экстракта виноградной косточки и частичной дегидратации сырья. Представление результатов организовано поэтапно: сначала анализируются органолептические характеристики готовой продукции, затем — физико-химические показатели, сопоставленные с контрольными образцами. Такая структура позволяет системно оценить влияние предложенной технологии на качество конечного продукта и обосновать ее технологическую состоятельность.

Органолептические характеристики изделий

Результаты органолептической оценки хлебобулочных изделий, приготовленных с использованием пророщенного амаранта, экстракта виноградной косточки и технологии частичной дегидратации, представлены в Таблице 2. Испытуемые образцы соответствовали установленным требованиям по следующим параметрам: форма и внешний вид изделия соответствовали форме выпекания; поверхность была гладкой, без трещин и подрывов; корка — умеренно выпуклая, равномерно окрашенная. Мякиш характеризовался хорошей пропеченностью и эластичностью, пористость была равномерной, мелкой, без пустот. Вкус образцов — с легкой кислинкой, характерный для безглютеновой продукции, с легким ореховым привкусом. Запах — приятный, хлебный, без сторонних примесей.

Физико-химические характеристики

В результате физико-химического анализа установлено, что опытные образцы безглютеновых хлебобулочных изделий имели высокую степень пористости (72%)

Таблица 2

Органолептические характеристики опытного образца безглютенового хлебобулочного изделия

Table 2 Organoleptic Characteristics of the Experimental Sample of a Gluten-Free Bakery Product

Показатель		Среднее значение (±SD)	Критерий ГОСТ
Форма	Соответствует форме выпекания	5.0 ± 0.0	Соответствует
Цвет корки	Темно-коричневый	4,8 ± 0,1	Соответствует
Эластичность мякиша	Эластичный (после нажатия восстанавливается)	4.9 ± 0.1	Соответствует
Вкус	С легкой кислинкой, с легким ореховым привкусом	$4,6 \pm 0,2$	Соответствует
Запах	Хлебный	4.8 ± 0.2	Соответствует

Примечание. Балльная оценка по 5-балльной шкале, n = 10, среднее значение.

Note. Scoring on a 5-point scale; n = 10; mean value.

Таблица 3

Сравнительные физико-химические показатели хлебобулочных изделий

Table 3 **Comparative Physicochemical Parameters of Bakery Products**

Образец	Влажность, %	Пористость, %	Кислотность, град	Глютен, мг/кг	Выход хлеба, %
С использованием амаранта и экстракта	47,2	62	2,8	0	135,0
Средние значения БГ изделий (лит.)	19,0-65,0	>50,0	0,2-5,0	<20	140,0
Пшеничный формовой хлеб	49,0	55	7,0	70–80	130–150

и низкое содержание влаги (47,2%), что благоприятно сказывается на их текстуре и сроке хранения. Кислотность составила 2,8 градуса, что соответствует физиологически приемлемым значениям. Содержание глютена не превышало 0 мг/кг, что подтверждает полное соответствие требованиям аглютеновой диеты (ГОСТ Р 58956-2020). Сравнительные данные по основным показателям представлены в Таблице 3.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные результаты демонстрируют значительное улучшение потребительских и технологических характеристик хлебобулочных изделий, разработанных по предложенной технологии. Органолептический анализ подтвердил высокую оценку по всем пяти параметрам (вкус, запах, структура, пористость, внешний вид), что соответствует нормативам ГОСТ 5667-2022. Это особенно важно, учитывая традиционные трудности с текстурой и стабильностью безглютеновой выпечки, обусловленные отсутствием клейковины.

Сравнение с существующими аналогами

При сопоставлении с типичными безглютеновыми изделиями и традиционным пшеничным хлебом (см. Таблицу 3), опытные образцы показали превосходство по ряду ключевых параметров. Повышенная пористость (62% против 50-55%) и выход продукта (135%) указывают на улучшенные реологические свойства теста, вероятно, за счёт активации ферментов при проращивании зерна и взаимодействия полифенолов экстракта виноградной косточки с крахмалом и белками. Влажность, находящаяся в пределах 47,2%, также способствует более длительному сроку хранения и приятной текстуре мякиша, что согласуется с данными Иванова (2025).

Высокие функциональные характеристики изделий могут быть объяснены комплексным подходом к выбору сырья и способу его обработки. Применение частичной дегидратации при 60-65 °C позволяет минимизировать потери термолабильных соединений, таких как сквален, полифенолы и витамины группы В (Calderón de la Barca et al., 2022). Экстракт виноградной косточки не только улучшает структуру мякиша, но и проявляет выраженные антиоксидантные свойства, что положительно влияет на сроки хранения. Пророщенное зерно усиливает ферментативные процессы и обогащает продукт пищевыми волокнами, витаминами и минералами.

Продукция демонстрирует высокую нутритивную плотность, что особенно актуально в диетическом и детском питании. Амарант, как известно, содержит 16-18% белка с высоким содержанием лизина, а также минеральные вещества (кальций, магний, железо) и сквален Амарант действительно превосходт другие злаки, поскольку богат белками и полифенольными соединениями, такими как флавоноиды, каротиноиды и токоферолы, которые оказывают множество полезных для здоровья эффектов. Кроме того, он содержат различные антипитательные компоненты, такие как фитиновая кислота и сапонины, которые связывают микро- и макроэлементы и делают их недоступными для нашего организма. Однако с помощью различных методов обработки, таких как ферментация, проращивание, экструзия и приготовление, их биодоступность может быть повышена (Jan et al., 2023). Учитывая полное отсутствие глютена (<1 мг/кг), изделия полностью соответствуют требованиям, предъявляемым к диете при целиаки. В сочетании с антиоксидантами из виноградной косточки, продукт может оказывать положительное влияние на снижение оксидативного стресса, часто сопутствующего целиакии (Попов с соавт., 2024).

Особое внимание заслуживает низкая себестоимость продукции, обусловленная использованием локального сырья и простоты производственного цикла без энергоемкой термообработки. Это делает технологию перспективной для тиражирования в условиях регионального производства, в том числе в рамках программ по импортозамещению и продовольственной безопасности. Как отмечают Сидорова и соавт. (2022) добавление натуральных компонентов растительного происхождения позволяет улучшить органолептику изделий без дополнительных затрат на синтетические улучшители.

Тем не менее, полученные данные требуют дополнительной валидации: в частности, необходимы сенсорные панели с привлечением широкой потребительской выборки, а также биохимические анализы остаточных количеств проантоцианидинов и их активности после выпечки. Также перспективными представляются клинические исследования эффективности продукции в группах с подтверждённой целиакией, что подчеркнуто в рекомендациях Lohi et al. (2007).

ЗАКЛЮЧЕНИЕ

Разработанная технология производства безглютеновых хлебобулочных изделий на основе амаранта с применением экстракта виноградной косточки и частичной дегидратации продемонстрировала высокую технологическую эффективность и улучшенные потребительские характеристики по сравнению с типичными безглютеновыми и традиционными пшеничными аналогами. Повышенная пористость, стабильная структура мякиша, отсутствие глютена и, достаточно высокий выход изделия, позволяют рекомендовать данную рецептуру как перспективное направление в производстве функциональных продуктов питания.

Пищевая ценность изделий, обогащённых природными антиоксидантами и белком из пророщенного амаранта, делает их особенно актуальными для профилактики целиакии и коррекции дефицитных состояний. Энергосберегающая низкотемпературная обработка и использование локального сырья обеспечивают экономическую целесообразность масштабирования технологии.

Ограничения исследования связаны, прежде всего, с ограниченным объемом клинической и микробиологической оценки полученных изделий: в рамках данной работы не проводились исследования по усвояемости, гликемическому индексу и воздействию на маркеры воспаления у целевых групп (например, пациентов с целиакией). Кроме того, органолептический анализ осуществлялся в рамках экспертной панели, без вовлечения репрезентативной выборки потребителей, что ограничивает обобщаемость результатов.

В дальнейшем планируется расширение номенклатуры продуктов на основе данной технологии (включая детское и лечебное питание), а также проведение углубленных исследований по пищевой безопасности, клинической эффективности и стабильности рецептур при длительном хранении. Также перспективным

направлением видится внедрение цифрового мониторинга параметров ферментации и биохимического состава, в том числе с применением ИИ-технологий.

ОПИСАНИЕ АВТОРСКОГО ВКЛАДА

Наталия Александровна Есаулко: разработка методологии; формальный анализ.

Мария Владимировна Селиванова: разработка методологии; проведение исследования; визуализация; написание черновика рукописи.

Данил Сергеевич Соломатин: курирование данных; формальный анализ; валидация результатов.

Елена Семеновна Романенко: разработка концепции; научное руководство; написание рукописи — рецензирование и редактирование.

Елена Алексеевна Миронова: предоставление ресурсов; проведение исследования; визуализация.

Мария Сергеевна Новак: административное руководство исследовательским проектом; получение финансирования.

AUTHOR CONTRIBUTIONS

Natalia A. Esaulko: methodology; formal analysis.

Maria V. Selivanova: methodology; investigation; visualization; writing — original draft.

Danil S. Solomatin: data curation; formal analysis; validation.

Elena S. Romanenko: conceptualization; supervision; writing — review & editing.

Elena A. Mironova: resources; investigation; visualization. Maria S. Novak: project administration; funding acquisition.

ЛИТЕРАТУРА

Бараняк Дж., Добровольска К. М. (2022). Двойственная природа амаранта — функционального продукта питания и потенциального лекарства. *Продукты numaния*, 11(4), 618. https://doi.org/10.3390/foods11040618

Быкова, С.В., Парфенов, А.И., & Сабельникова, Е.А. (2018). Эпидемиология целиакии в мире. Альманах клинической медицины, 46(1), 23-31. https://doi.org/10.18786/2072-0505-2018-46-1-23-31

Волкова, А. В. Влияние нетрадиционного зернового сырья на аминокислотный состав хлеба (2023). Научный и экономический потенциал развития общества: теория и практика: Материалы всероссийской

БЕЗГЛЮТЕНОВЫЕ ХЛЕБОБУЛОЧНЫЕ ИЗДЕЛИЯ ИЗ ПРОРОЩЕННОГО АМАРАНТА: ПРИМЕНЕНИЕ ЭКСТРАКТА ВИНОГРАДНОЙ КОСТОЧКИ И ЧАСТИЧНОЙ ДЕГИДРАТАЦИИ В ФУНКЦИОНАЛЬНОЙ РЕЦЕПТУРЕ

■ Н.А. Есаулко, М.В. Селиванова, Д.С. Соломатин, Е.С. Романенко, Е.А. Миронова, М.С. Новак

- научно-практической конференции (с. 281–289). Благовещенск: Дальневосточный государственный аграрный университет.
- Иванова, Н.Н. (2025). Эффективность использования амарантовой муки в производстве мелкоштучных хлебобулочных изделий. Международный научно-исследовательский журнал, (151). https://doi.org/10.60797/IRJ.2025.151.2
- Морозова, Д. А. (2021). Анализ антиоксидантной активности экстрактов виноградной косточки в безглютеновых продуктах. Химия и технология пищевых продуктов, 12(1), 34–40.
- Morozova, D. A. (2021). Analysis of the antioxidant activity of grape seed extracts in gluten-free products. Chemistry and Technology of Food Products, 12(1), 34–40.
- Никитин, И. А. (2005). Применение муки амаранта и модифицированных композиций на его основе в технологии хлеба [Диссертация на соискание учёной степени кандидата технических наук]. Воронежская государственная технологическая академия.
- Пищиков, Г.Б., & Лазарев, В.А. (2024). Разработка хлебобулочных изделий повышенной биологической ценности из нетрадиционных видов муки. Вестник ЮУрГУ. Серия «Пищевые и биотехнологии», 12(4), 40-51. https://doi.org/10.14529/food240405
- Пономарев, С.В., Зотов, А.Н., & Воронов, Д.В. (2024). Фитохимические компоненты, и промышленное применение виноградных косточек. Краткий обзор мировых исследований. Эффективное животноводство, 1(191), 70-73.
- Попов, В. И., Бавыкина И. А., Звягин А. А., Мирошниченко Л. А., & Бавыкин Д.В. (2024). Значение продуктов из амаранта в диетическом рационе питания детей с непереносимостью глютена. Вопросы питания, 93(4), 14–21. https://doi.org/10.33029/0042-8833-2024-93-4-14-21
- Рыжакова, А. В. & Головизнина, М. С. (2019). Использование альтернативных видов сырья при создании безглютеновой кондитерской продукции. Пищевая промышленность: наука и технологии, 12(3), 42–48.
- Сидорова, Ю., Бирюлина, Н., Зилова, И., & Мазо, В. (2022). Белки зерна амаранта: перспективы использования в специализированной пищевой продукции. Вопросы питания, 91(3), 96–106.
- Тлиф, А. И., Кондратьева, Е. И., Черняк, И. Ю., Долбнева, О. В., Штода, И. И., & Головенко, И. М. (2012). Распространенность полиморфных вариантов генов HLA DQA1 и DQB1 у больных сахарным диабетом 1-го типа и целиакией в Краснодарском крае. Кубанский научный медицинский вестник, (5), 65–70.
- Тохтиева, Л. Х. & Тохтиева, Э. А. (2022). Амарант источник повышения пищевой ценности хлеба. Теория и практика современной аграрной науки (с. 1097–1099). Новосибирск: Новосибирский государственный аграрный университет.
- Федянина, Л. Н., Смертина, Е. С., Лях, В. А. & Соболева, Е. В. (2017). Экспериментальное обоснование эффективности действия функциональных хлебобулочных изделий с добавлением экстрактов водных и растительных объектов Дальнего Востока. Техника и технология пищевых производств, 4(47), 84–91. https://doi.org/10.21603/2074-9414-2017-4-84-91
- Черкасова, Е. А. (2024). Динамика заболеваемости и генетические особенности целиакии у детей и подростков, проживающих в Ставропольском крае [Диссертации кандидата медицинских наук]. Ставропольский государственный медицинский университет.
- Щербакова, Е.И., Кузнецова, А.В. (2022) Перспективы использования муки амаранта в производстве мучных изделий (обзор литературы). Товаровед продовольственных товаров, (2), 86-91. https://doi.org/10.33920/igt-01-2202-01
- Aderibigbe, O.R., Ezekiel, O.O., Owolade, S.O., Korese, J.K., Sturm, B., Hensel, O. (2022). Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Critical Reviews in Food Science and Nutrition, 62(3), 656–669. https://doi.org/10.1080/10408398.2020.1825323
- Alvarez-Jubete, L., Arendt, E. K. & Gallagher, E. (2010). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. International Journal of Food Sciences and Nutrition, 60(4), 240–257. https://doi.org/10.1080/09637480902950597
- Ahmed, A., Akram, Q., Naz, W., Akhtar, S., Amjad, I., Ashraf, M., Shakeel, A., Saeed, A., Sarfraz, S., Shamim, F., Shahzadi, N., Kashif, M., & Mahmood, N. (2022). Possible revolutionary substitute to wheat: A review on nutrient

БЕЗГЛЮТЕНОВЫЕ ХЛЕБОБУЛОЧНЫЕ ИЗДЕЛИЯ ИЗ ПРОРОЩЕННОГО АМАРАНТА: ПРИМЕНЕНИЕ ЭКСТРАКТА ВИНОГРАДНОЙ КОСТОЧКИ И ЧАСТИЧНОЙ ДЕГИДРАТАЦИИ В ФУНКЦИОНАЛЬНОЙ РЕЦЕПТУРЕ

■ Н.А. Есаулко, М.В. Селиванова, Д.С. Соломатин, Е.С. Романенко, Е.А. Миронова, М.С. Новак

- rich and healthy diet development by pseudo cereals. Biological and Clinical Sciences Research Journal, (1). https://doi.org/10.54112/bcsrj.v2022i1.108
- Balakrishnan, G, Schneider, RG. (2022). The role of amaranth, quinoa, and millets for the development of healthy, sustainable food products — A concise review. Foods, 11(16), 2442. https://doi.org/10.3390/foods11162442
- Calderón de la Barca, A. M., Mercado-Gómez, L. E., Heredia-Sandoval, N. G., Luna-Alcocer, V., Porras Loaiza, P. M. A., González-Ríos, H., & Islas-Rubio, A. R. (2022). Highly nutritional bread with partial replacement of wheat by amaranth and orange sweet potato. Foods, 11(10), Article 1473. https://doi.org/10.3390/foods11101473
- Eduardo, K., Bedoya-Perales, N., Escobedo-Pacheco, E., & Saldaña, E. (2024). Sensory and consumer science as a valuable tool to the development of quinoa-based food products: More than three decades of scientific evidence. Scientia Agropecuaria, 15(2), 251–267. https://doi.org/10.17268/sci.agropecu.2024.019
- Hager, A.-S., Wolter, A., Jacob, F., Zannini, E., & Arendt, E. K. (2012). Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. Journal of Cereal Science, 56(2), 239–247. https://doi.org/10.1016/j.jcs.2012.06.005
- Graziano, S., Agrimonti, C., Marmiroli, N., & Gullì, M. (2022). Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends in Food Science & Technology, 125(2). https://doi.org/10.1016/j.tifs.2022.04.007
- Kaur, N, Kaur, S, Agarwal, A, Sabharwal, M, Tripathi, AD. (2024). Amaranthus crop for food security and sustainable food systems. *Planta*, 260(3), 59. https://doi.org/10.1007/s00425-024-04490-3
- Lohi, S., Mustalahti, K., Kaukinen, K., Laurila, K., Collin, P., Rissanen, H., Lohi, O., Bravi, E., Gasparin, M., Reunanen, A. & Mäki, M. (2007). Increasing prevalence of coeliac disease over time. Alimentary Pharmacology & Therapeutics, 26(9), 1217–1225. https://doi.org/10.1111/j.1365–2036.2007.03502.x
- Jan N, Hussain SZ, Naseer B, Bhat TA. (2023) Amaranth and guinoa as potential nutraceuticals: A review of antinutritional factors, health benefits and their applications in food, medicinal and cosmetic sectors. Food Chemistry: X, 18, 100687. https://doi.org/10.1016/j.fochx.2023.100687
- Meena, V. S., Gora, J. S., Singh, A., Ram, C., Meena, N. K., Pratibha, Rouphael, Y., Basile, B., & Kumar, P. (2022). Underutilized fruit crops of Indian arid and semi-arid regions: Importance, conservation and utilization strategies. Horticulturae, 8(2), 171. https://doi.org/10.3390/horticulturae8020171
- Monteiro, Sh.S., Schnorr, C.E., De.B. & Pasquali, M.A. (2023). Paraprobiotics postbiotics. Current state of scientific research and future trends toward the development of functional foods. Foods, 12, 23–34. https://doi.org/10.3390/foods12122394
- Oprea, O. B., Popa, M. E., Apostol, L., & Gaceu, L. (2022). Research on the potential use of grape seed flour in the bakery industry. Foods, 11(11), 1589. https://doi.org/10.3390/foods11111589
- Peñalver, R., Díaz-Vásquez, W., Maulén, M., Nieto, G. (2024) Sustainable processes and physico-chemical characterization of artisanal spontaneous gluten (quinoa, amaranth and brown rice) compared to wheat sourdough. Sustainability, 16, Article 3297. https://doi.org/10.3390/su16083297
- Rodríguez, M., Bianchi, F., Simonato, B., Rizzi, C., Fontana, A., & Tironi, V. A. (2023). Exploration of grape pomace peels and amaranth flours as functional ingredients in the elaboration of breads: Phenolic composition, bioaccessibility, and antioxidant activity. Food & Function, 15(2), 608-624. https://doi.org/10.1039/d3fo04494g
- Ruiz-Aceituno, L., Casado, N., Arriero-Romo, E., Morante-Zarcero, S., Lázaro, A.; Sierra, I. (2024). Development of gluten-freebread based on maize and buckwheatand enriched with aromatic herbsand spices. Applied Sciences, 14, Article 3348. https://doi.org/10.3390/app14083348
- Savvateeva, L. V., Erdes, S. I., Antishin, A. S., & Zamyatnin, A. A. (2017). Overview of celiac disease in russia: regional data and estimated prevalence. Journal of Immunology Research, 1–8. https://doi.org/10.1155/2017/2314813
- Siddiqui, S.A,. Mahmud, M.M.C,. Abdi, G,. Wanich, U., Farooqi, M.Q.U., Settapramote, N,. Khan, S,. & Wani, S.A. (2022). New alternatives from sustainable sources to wheat in bakery foods: Science, technology, and challenges. Journal of Food Biochemistry, 46(9), Article e14185. https://doi.org/10.1111/jfbc.14185

БЕЗГЛЮТЕНОВЫЕ ХЛЕБОБУЛОЧНЫЕ ИЗДЕЛИЯ ИЗ ПРОРОЩЕННОГО АМАРАНТА: ПРИМЕНЕНИЕ ЭКСТРАКТА ВИНОГРАДНОЙ КОСТОЧКИ И ЧАСТИЧНОЙ ДЕГИДРАТАЦИИ В ФУНКЦИОНАЛЬНОЙ РЕЦЕПТУРЕ

■ Н.А. Есаулко, М.В. Селиванова, Д.С. Соломатин, Е.С. Романенко, Е.А. Миронова, М.С. Новак

- Schoenlechner, R., Drausinger, J., Ottenschlaeger, V., Jurackova, K., & Berghofer, E. (2010). Functional properties of gluten-free pasta produced from amaranth, quinoa and buckwheat. Plant Foods for Human Nutrition, 65(4), 339–349. https://doi.org/10.1007/s11130–010-0194–0
- Šmídová, Z.; Rysová, J. (2022). Gluten-free bread and bakery products technology. Foods, 11(3), 480. https://doi.org/10.3390/foods11030480
- Yalcin, E., Gok, I., & Ozdal, T. (2022). Effect of grape seed flour on the phenolic profile, antioxidant capacity and sensory properties of muffins. Latin American Applied Research, An international journal 52(3), 213-220. https://doi.org/10.52292/j.laar.2022.921
- Yano, H. (2020). Recent advances in the understanding of gluten-free bread structure. npj Science of Food, 3, Article 7. https://doi.org/10.1038/s41538-019-0040-1

REFERENCES

- Baraniak, J., & Dobrowolska, K. M. (2022). The dual nature of amaranth Functional food and potential medicine. Foods, 11(4), 618. https://doi.org/10.3390/foods11040618
- Bykova, S.V., Parfeno, A.I., & Sabel'nikova, E.A. (2018). Epidemiology of celiac disease in the world. The Almanac of Clinical Medicine, 46(1), 23–31. https://doi.org/10.18786/2072-0505-2018-46-1-23-31
- Volkova, A. V. (2023). The influence of non-traditional grain raw materials on the amino acid composition of bread. Scientific and Economic Potential for Society's Development: Theory and Practice: Proceedings of the All-Russian Scientific and Practical Conference (pp. 281–289). Blagoveshchensk: Far Eastern State Agrarian University.
- Ivanova, N.N. (2025). The effectiveness of using amaranth flour in the production of small-piece bakery products. International Scientific Research Journal, (151). https://doi.org/10.60797/IRJ.2025.151.2
- Morozova, D. A. (2021). Analysis of the antioxidant activity of grape seed extracts in gluten-free products. Chemistry and Technology of Food Products, 12(1), 34–40.
- Nikitin, I. A. (2005). The use of amaranth flour and modified compositions based on it in bread technology [Dissertation for the degree of Candidate of Technical Sciences]. Voronezh State Technological Academy.
- Pischikov, G.B., & Lazarev, V.A. (2024). Development of bakery products of increased biological value from non-traditional types of flour. Bulletin of SUSU. The series "Food and Biotechnology". 2024, 12(4), 40-51. https://doi.org/10.14529/food240405
- Ponomarev, S.V., Zotov, A.N., & Voronov, D.V. (2024). Phytochemical components, and industrial use of grape seeds. A brief overview of world research. Efficient Animal Husbandry, 1 (191), 70–73.
- Popov, V. I., Bavykina, I. A., Zvyagin, A. A., Miroshnichenko L. A., & Bavykin D.V. (2024). The significance of amaranth products in the dietary nutrition of children with gluten intolerance. Nutrition Issues, 93(4), 14-21. https://doi.org/10.33029/0042-8833-2024-93-4-14-21
- Ryzhakova, A. V. & Goloviznina, M. S. (2019). The use of alternative types of raw materials in the creation of glutenfree confectionery products. Food Industry: Science and Technology 12(3), 42-48.
- Sidorova, Yu., Biryulina, N., Zilova, I., & Mazo, V. (2022). Amaranth grain proteins: Prospects for use in specialized food products. Nutrition Issues, 91(3), 96–106.
- Tlif, A. I., Kondrat'eva, E. I., Chernyak, I. Yu., Dolbneva, O. V., Shtoda, I. I. & Golovenko, I. M. (2012). Prevalence of polymorphic variants of HLA DQA1 and DQB1 genes in patients with type 1 diabetes mellitus and celiac disease in the Krasnodar Territory. *Kuban Scientific Medical Bulletin*, (5), 65–70.
- Tokhtieva, L. Kh. & Tokhtieva, E. A. (2022). Amaranth A source of increasing the nutritional value of bread. *Theory* and practice of modern agricultural science (pp. 1097–1099). Novosibirsk: Novosibirsk State Agrarian University.
- Fedyanina L. N., Smertina E. S., Lyakh V. A., Soboleva E. V. (2017). Experimental confirmation of the efficiency of functional bakery products containing extracts from far east plant and aquatic species. Food Processing: Techniques and Technology, 47(4), 84-91. https://doi.org/10.21603/2074-9414-2017-4-84-91

БЕЗГЛЮТЕНОВЫЕ ХЛЕБОБУЛОЧНЫЕ ИЗДЕЛИЯ ИЗ ПРОРОЩЕННОГО АМАРАНТА: ПРИМЕНЕНИЕ ЭКСТРАКТА ВИНОГРАДНОЙ КОСТОЧКИ И ЧАСТИЧНОЙ ДЕГИДРАТАЦИИ В ФУНКЦИОНАЛЬНОЙ РЕЦЕПТУРЕ

■ Н.А. Есаулко, М.В. Селиванова, Д.С. Соломатин, Е.С. Романенко, Е.А. Миронова, М.С. Новак

- Cherkasova, E. A. (2024). Dynamics of morbidity and genetic features of celiac disease in children and adolescents living in the Stavropol Territory [Unhublished doctoral dissertation]. Stavropol State Medical University.
- Shcherbakova, E.I., Kuznetsova, A.V. (2022) Prospects for the use of amaranth flour in the production of flour products (literature review). *Food Product Expert*, 2. https://doi.org/10.33920/igt-01–2202-01
- Aderibigbe, O.R., Ezekiel, O.O., Owolade, S.O., Korese, J.K., Sturm, B., Hensel, O. (2022). Exploring the potentials of underutilized grain amaranth (*Amaranthus spp.*) along the value chain for food and nutrition security: A review. *Critical Reviews in Food Science and Nutrition*, 62(3), 656–669. https://doi.org/10.1080/10408398.2020.1825323
- Alvarez-Jubete, L., Arendt, E. K. & Gallagher, E. (2010). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. *International Journal of Food Sciences and Nutrition*, 60(4), 240–257. https://doi.org/10.1080/09637480902950597
- Ahmed, A., Akram, Q., Naz, W., Akhtar, S., Amjad, I., Ashraf, M., Shakeel, A., Saeed, A., Sarfraz, S., Shamim, F., Shahzadi, N., Kashif, M., & Mahmood, N. (2022). Possible revolutionary substitute to wheat: A review on nutrient rich and healthy diet development by pseudo cereals. *Biological and Clinical Sciences Research Journal*, (1). https://doi.org/10.54112/bcsrj.v2022i1.108
- Balakrishnan, G, Schneider, RG. (2022). The role of amaranth, quinoa, and millets for the development of healthy, sustainable food products A concise review. *Foods*, *11*(16), 2442. https://doi.org/10.3390/foods11162442
- Calderón de la Barca, A. M., Mercado-Gómez, L. E., Heredia-Sandoval, N. G., Luna-Alcocer, V., Porras Loaiza, P. M. A., González-Ríos, H., & Islas-Rubio, A. R. (2022). Highly nutritional bread with partial replacement of wheat by amaranth and orange sweet potato. *Foods*, *11*(10), Article 1473. https://doi.org/10.3390/foods11101473
- Eduardo, K., Bedoya-Perales, N., Escobedo-Pacheco, E., & Saldaña, E. (2024). Sensory and consumer science as a valuable tool to the development of quinoa-based food products: More than three decades of scientific evidence. *Scientia Agropecuaria*, 15(2), 251–267. https://doi.org/10.17268/sci.agropecu.2024.019
- Hager, A.-S., Wolter, A., Jacob, F., Zannini, E., & Arendt, E. K. (2012). Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. *Journal of Cereal Science*, *56*(2), 239–247. https://doi.org/10.1016/j.jcs.2012.06.005
- Graziano, S., Agrimonti, C., Marmiroli, N., & Gullì, M. (2022). Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. *Trends in Food Science & Technology, 125*(2). https://doi.org/10.1016/j.tifs.2022.04.007
- Kaur, N, Kaur, S, Agarwal, A, Sabharwal, M, Tripathi, AD. (2024). Amaranthus crop for food security and sustainable food systems. *Planta*, *260*(3), 59. https://doi.org/10.1007/s00425–024-04490–3
- Lohi, S., Mustalahti, K., Kaukinen, K., Laurila, K., Collin, P., Rissanen, H., Lohi, O., Bravi, E., Gasparin, M., Reunanen, A. & Mäki, M. (2007). Increasing prevalence of coeliac disease over time. *Alimentary Pharmacology & Therapeutics*, 26(9), 1217–1225. https://doi.org/10.1111/j.1365–2036.2007.03502.x
- Jan N, Hussain SZ, Naseer B, Bhat TA. (2023) Amaranth and quinoa as potential nutraceuticals: A review of antinutritional factors, health benefits and their applications in food, medicinal and cosmetic sectors. *Food Chemistry: X, 18,* 100687. https://doi.org/10.1016/j.fochx.2023.100687
- Meena, V. S., Gora, J. S., Singh, A., Ram, C., Meena, N. K., Pratibha, Rouphael, Y., Basile, B., & Kumar, P. (2022). Underutilized fruit crops of Indian arid and semi-arid regions: Importance, conservation and utilization strategies. *Horticulturae*, 8(2), 171. https://doi.org/10.3390/horticulturae8020171
- Monteiro, Sh.S., Schnorr, C.E., De.B. & Pasquali, M.A. (2023). Paraprobiotics postbiotics. Current state of scientific research and future trends toward the development of functional foods. *Foods, 12*, 23–34. https://doi.org/10.3390/foods12122394
- Oprea, O. B., Popa, M. E., Apostol, L., & Gaceu, L. (2022). Research on the potential use of grape seed flour in the bakery industry. *Foods*, *11*(11), 1589. https://doi.org/10.3390/foods11111589
- Peñalver, R., Díaz-Vásquez, W., Maulén, M., Nieto, G. (2024) Sustainable processes and physico-chemical characterization of artisanal spontaneous gluten (quinoa, amaranth and brown rice) compared to wheat sourdough. *Sustainability*, *16*, Article 3297. https://doi.org/10.3390/su16083297

БЕЗГЛЮТЕНОВЫЕ ХЛЕБОБУЛОЧНЫЕ ИЗДЕЛИЯ ИЗ ПРОРОЩЕННОГО АМАРАНТА: ПРИМЕНЕНИЕ ЭКСТРАКТА ВИНОГРАДНОЙ КОСТОЧКИ И ЧАСТИЧНОЙ ДЕГИДРАТАЦИИ В ФУНКЦИОНАЛЬНОЙ РЕЦЕПТУРЕ

■ Н.А. Есаулко, М.В. Селиванова, Д.С. Соломатин, Е.С. Романенко, Е.А. Миронова, М.С. Новак

- Rodríguez, M., Bianchi, F., Simonato, B., Rizzi, C., Fontana, A., & Tironi, V. A. (2023). Exploration of grape pomace peels and amaranth flours as functional ingredients in the elaboration of breads: Phenolic composition, bioaccessibility, and antioxidant activity. *Food & Function*, 15(2), 608–624. https://doi.org/10.1039/d3fo04494g
- Ruiz-Aceituno, L., Casado, N., Arriero-Romo, E., Morante-Zarcero, S., Lázaro, A.; Sierra, I. (2024). Development of gluten-freebread based on maize and buckwheatand enriched with aromatic herbsand spices. *Applied Sciences*, 14, Article 3348. https://doi.org/10.3390/app14083348
- Savvateeva, L. V., Erdes, S. I., Antishin, A. S., & Zamyatnin, A. A. (2017). Overview of celiac disease in russia: regional data and estimated prevalence. *Journal of Immunology Research*, 1–8. https://doi.org/10.1155/2017/2314813
- Siddiqui, S.A., Mahmud, M.M.C., Abdi, G., Wanich, U., Farooqi, M.Q.U., Settapramote, N., Khan, S., & Wani, S.A. (2022). New alternatives from sustainable sources to wheat in bakery foods: Science, technology, and challenges. *Journal of Food Biochemistry, 46*(9), Article e14185. https://doi.org/10.1111/jfbc.14185
- Schoenlechner, R., Drausinger, J., Ottenschlaeger, V., Jurackova, K., & Berghofer, E. (2010). Functional properties of gluten-free pasta produced from amaranth, quinoa and buckwheat. *Plant Foods for Human Nutrition*, *65*(4), 339–349. https://doi.org/10.1007/s11130–010-0194–0
- Šmídová, Z.; Rysová, J. (2022). Gluten-free bread and bakery products technology. *Foods*, *11*(3), 480. https://doi.org/10.3390/foods11030480
- Yalcin, E., Gok, I., & Ozdal, T. (2022). Effect of grape seed flour on the phenolic profile, antioxidant capacity and sensory properties of muffins. *Latin American Applied Research, An international journal* 52(3), 213–220. https://doi.org/10.52292/j.laar.2022.921
- Yano, H. (2020). Recent advances in the understanding of gluten-free bread structure. *npj Science of Food, 3*, Article 7. https://doi.org/10.1038/s41538–019-0040–1

ОБ АВТОРАХ

- **Есаулко Наталия Александровна**, к.с.-х.н., доцент кафедры садоводства и переработки растительного сырья им. проф. Н.М. Куренного «Ставропольский государственный аграрный университет» (355017, Российская Федерация, г. Ставрополь, пер. 3оотехнический, 12), ORCID: https://orcid.org/0000-0002-1901-3616, Scopus ID: 56801107500, SPIN-код: 3940-8702, e-mail: Esaulko70@mail.ru
- **Селиванова Мария Владимировна**, к.с.-х.н., доцент, зав.кафедрой садоводства и переработки растительного сырья им. проф. Н.М. Куренного «Ставропольский государственный аграрный университет» (355017, Российская Федерация, г. Ставрополь, пер. 3оотехнический, 12), ORCID: https://orcid.org/0000-0001-5770-6272, Scopus ID: 56800770900, SPIN-код: 7243-3618, e-mail: selivanova86@mail.ru
- **Соломатин Данил Сергеевич**, студент з курса специальность «Агрономия» «Ставропольский государственный аграрный университет» (355017, Российская Федерация, г. Ставрополь, пер. 3оотехнический, 12), e-mail: solomatindanil@vk.com
- Романенко Елена Семеновна, к.с.-х.н., доцент кафедры садоводства и переработки растительного сырья им. проф. Н.М. Куренного «Ставропольский государственный аграрный университет» (355017, Российская Федерация, г. Ставрополь, пер.Зоотехнический, 12), ORCID: https://orcid.org/0000-0002-6514-414X, Scopus ID: 56800299500, SPIN-код: 4169-4840, e-mail: elena_r65@mail.ru
- **Миронова Елена Алексеевна**, к.т.н., доцент кафедры садоводства и переработки растительного сырья им. проф. Н.М. Куренного «Ставропольский государственный аграрный университет» (355017, Российская Федерация, г. Ставрополь, пер.Зоотехнический, 12), ORCID: https://orcid.org/0000-0002-2425-0528, Scopus ID: 57211159116, SPIN-код: 8387-9985, e-mail: elena_st_86@mail.ru
- **Новак Мария Сергеевна**, ассистент кафедры садоводства и переработки растительного сырья им. проф. Н.М. Куренного «Ставропольский государственный аграрный университет» (355017, Российская Федерация, г. Ставрополь, пер.Зоотехнический, 12), ORCID: https://orcid.org/0000-0002-6958-5815, Scopus ID: 57211159969, SPIN-код: 6992-2750, e-mail: masha.german.93@mail.ru

AUTHOR INFORMATION

- Esaulko Natalya Aleksandrovna, Cand. Sci. (Agricultural), Associate Professor of the Department of Horticulture and Processing of Plant Raw Materials named after prof. N.M. Kurennoy Stavropol State Agrarian University (355017, Russian Federation, Stavropol, Zootekhnichesky lane 12), ORCID: https://orcid.org/0000-0002-1901-3616, Scopus ID: 56801107500, SPIN-код: 3940-8702, e-mail: Esaulko70@mail.ru
- Selivanova Maria Vladimirovna, Cand. Sci. (Agricultural), Associate Professor, Head of Department of Horticulture and Processing of Plant Raw Materials named after prof. N.M. Kurennoy Stavropol State Agrarian University (355017, Russian Federation, Stavropol, Zootekhnichesky lane 12), https://orcid.org/0000-0001-5770-6272, Scopus ID: 56800770900, SPIN-код: 7243-3618, e-mail: selivanova86@mail.ru
- Solomatin Danil Sergeevich, student 3 course specialization « Agronomy» Stavropol State Agrarian University (355017, Russian Federation, Stavropol, Zootekhnichesky lane 12), e-mail: solomatindanil@vk.com
- Romanenko Elena Semenovna, Cand. Sci. (Agricultural), Associate Professor of the Department of Horticulture and Processing of Plant Raw Materials named after prof. N.M. Kurennoy Stavropol State Agrarian University (355017, Russian Federation, Stavropol, Zootekhnichesky lane 12), ORCID: https://orcid.org/0000-0002-6514-414X, Scopus ID: 56800299500, SPIN-код: 4169-4840, e-mail: elena_r65@mail.ru
- Mironova Elena Alekseevna, Cand. Sci. (Techn.), Associate Professor of the Department of Horticulture and Processing of Plant Raw Materials named after prof. N.M. Kurennoy Stavropol State Agrarian University (355017, Russian Federation, Stavropol, Zootekhnichesky lane 12), ORCID: https://orcid.org/0000-0002-2425-0528, Scopus ID: 57211159116, SPIN-код: 8387-9985, e-mail: elena_st_86@mail.ru
- Novak Maria Sergeevna, Assistant of the Department of Horticulture and Processing of Plant Raw Materials named after prof. N.M. Kurennoy Stavropol State Agrarian University (355017, Russian Federation, Stavropol, Zootekhnichesky lane 12), ORCID: https://orcid.org/0000-0002-6958-5815, Scopus ID: 57211159969, SPIN-код: 6992-2750, e-mail: masha.german.93@mail.ru